Nowadays, distributed optimization algorithms are widely used in various complex networks. In order to expand the theory of distributed optimization algorithms in the direction of directed graph, the distributed conve...Nowadays, distributed optimization algorithms are widely used in various complex networks. In order to expand the theory of distributed optimization algorithms in the direction of directed graph, the distributed convex optimization problem with time-varying delays and switching topologies in the case of directed graph topology is studied. The event-triggered communication mechanism is adopted, that is, the communication between agents is determined by the trigger conditions, and the information exchange is carried out only when the conditions are met. Compared with continuous communication, this greatly saves network resources and reduces communication cost. Using Lyapunov-Krasovskii function method and inequality analysis, a new sufficient condition is proposed to ensure that the agent state finally reaches the optimal state. The upper bound of the maximum allowable delay is given. In addition, Zeno behavior will be proved not to exist during the operation of the algorithm. Finally, a simulation example is given to illustrate the correctness of the results in this paper.展开更多
为解决日趋严重的工业控制系统(industrial control system,ICS)信息安全问题,提出一种针对工业控制网络的非参数累积和(cumulative sum,CUSUM)入侵检测方法.利用ICS输入决定输出的特性,建立ICS的数学模型预测系统的输出,一旦控制系统...为解决日趋严重的工业控制系统(industrial control system,ICS)信息安全问题,提出一种针对工业控制网络的非参数累积和(cumulative sum,CUSUM)入侵检测方法.利用ICS输入决定输出的特性,建立ICS的数学模型预测系统的输出,一旦控制系统的传感器遭受攻击,实际输出信号将发生改变.在每个时刻,计算工业控制模型的预测输出与传感器测量信号的差值,形成基于时间的统计序列,采用非参数CUSUM算法,实现在线检测入侵并报警.仿真检测实验证明,该方法具有良好的实时性和低误报率.选择适当的非参数CUSUM算法参数τ和β,该入侵检测方法不但能在攻击对控制系统造成实质伤害前检测出攻击,还对监测ICS中的误操作有一定帮助.展开更多
Minimax algorithm and machine learning technologies have been studied for decades to reach an ideal optimization in game areas such as chess and backgammon. In these fields, several generations try to optimize the cod...Minimax algorithm and machine learning technologies have been studied for decades to reach an ideal optimization in game areas such as chess and backgammon. In these fields, several generations try to optimize the code for pruning and effectiveness of evaluation function. Thus, there are well-armed algorithms to deal with various sophisticated situations in gaming occasion. However, as a traditional zero-sum game, Connect-4 receives less attention compared with the other members of its zero-sum family using traditional minimax algorithm. In recent years, new generation of heuristics is created to address this problem based on research conclusions, expertise and gaming experiences. However, this paper mainly introduced a self-developed heuristics supported by well-demonstrated result from researches and our own experiences which fighting against the available version of Connect-4 system online. While most previous works focused on winning algorithms and knowledge based approaches, we complement these works with analysis of heuristics. We have conducted three experiments on the relationship among functionality, depth of searching and number of features and doing contrastive test with sample online. Different from the sample based on summarized experience and generalized features, our heuristics have a basic concentration on detailed connection between pieces on board. By analysing the winning percentages when our version fights against the online sample with different searching depths, we find that our heuristics with minimax algorithm is perfect on the early stages of the zero-sum game playing. Because some nodes in the game tree have no influence on the final decision of minimax algorithm, we use alpha-beta pruning to decrease the number of meaningless node which greatly increases the minimax efficiency. During the contrastive experiment with the online sample, this paper also verifies basic characters of the minimax algorithm including depths and quantity of features. According to the experiment, these two characters can both effect the decision for each step and none of them can be absolutely in charge. Besides, we also explore some potential future issues in Connect-4 game optimization such as precise adjustment on heuristic values and inefficiency pruning on the search tree.展开更多
Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Seri...Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Serial Genetic Algorithm Decoder (SGAD) for decoding Low Density Parity Check (LDPC) codes. The results show that the proposed algorithm gives large gains over sum-product decoder, which proves its efficiency.展开更多
文摘Nowadays, distributed optimization algorithms are widely used in various complex networks. In order to expand the theory of distributed optimization algorithms in the direction of directed graph, the distributed convex optimization problem with time-varying delays and switching topologies in the case of directed graph topology is studied. The event-triggered communication mechanism is adopted, that is, the communication between agents is determined by the trigger conditions, and the information exchange is carried out only when the conditions are met. Compared with continuous communication, this greatly saves network resources and reduces communication cost. Using Lyapunov-Krasovskii function method and inequality analysis, a new sufficient condition is proposed to ensure that the agent state finally reaches the optimal state. The upper bound of the maximum allowable delay is given. In addition, Zeno behavior will be proved not to exist during the operation of the algorithm. Finally, a simulation example is given to illustrate the correctness of the results in this paper.
文摘为解决日趋严重的工业控制系统(industrial control system,ICS)信息安全问题,提出一种针对工业控制网络的非参数累积和(cumulative sum,CUSUM)入侵检测方法.利用ICS输入决定输出的特性,建立ICS的数学模型预测系统的输出,一旦控制系统的传感器遭受攻击,实际输出信号将发生改变.在每个时刻,计算工业控制模型的预测输出与传感器测量信号的差值,形成基于时间的统计序列,采用非参数CUSUM算法,实现在线检测入侵并报警.仿真检测实验证明,该方法具有良好的实时性和低误报率.选择适当的非参数CUSUM算法参数τ和β,该入侵检测方法不但能在攻击对控制系统造成实质伤害前检测出攻击,还对监测ICS中的误操作有一定帮助.
文摘Minimax algorithm and machine learning technologies have been studied for decades to reach an ideal optimization in game areas such as chess and backgammon. In these fields, several generations try to optimize the code for pruning and effectiveness of evaluation function. Thus, there are well-armed algorithms to deal with various sophisticated situations in gaming occasion. However, as a traditional zero-sum game, Connect-4 receives less attention compared with the other members of its zero-sum family using traditional minimax algorithm. In recent years, new generation of heuristics is created to address this problem based on research conclusions, expertise and gaming experiences. However, this paper mainly introduced a self-developed heuristics supported by well-demonstrated result from researches and our own experiences which fighting against the available version of Connect-4 system online. While most previous works focused on winning algorithms and knowledge based approaches, we complement these works with analysis of heuristics. We have conducted three experiments on the relationship among functionality, depth of searching and number of features and doing contrastive test with sample online. Different from the sample based on summarized experience and generalized features, our heuristics have a basic concentration on detailed connection between pieces on board. By analysing the winning percentages when our version fights against the online sample with different searching depths, we find that our heuristics with minimax algorithm is perfect on the early stages of the zero-sum game playing. Because some nodes in the game tree have no influence on the final decision of minimax algorithm, we use alpha-beta pruning to decrease the number of meaningless node which greatly increases the minimax efficiency. During the contrastive experiment with the online sample, this paper also verifies basic characters of the minimax algorithm including depths and quantity of features. According to the experiment, these two characters can both effect the decision for each step and none of them can be absolutely in charge. Besides, we also explore some potential future issues in Connect-4 game optimization such as precise adjustment on heuristic values and inefficiency pruning on the search tree.
文摘Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Serial Genetic Algorithm Decoder (SGAD) for decoding Low Density Parity Check (LDPC) codes. The results show that the proposed algorithm gives large gains over sum-product decoder, which proves its efficiency.