Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ...Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively.展开更多
以硬件代价优化为目的,对H.264宏块级的VBSME SAD VLSI结构进行了详细的分析,提出一种像素平滑重采样的SAD算法及其VLSI结构.该算法先将当前块和参考块像素划分成2×2的子块进行平滑和重采样,再进行7种可变块大小的SAD运算,以有效...以硬件代价优化为目的,对H.264宏块级的VBSME SAD VLSI结构进行了详细的分析,提出一种像素平滑重采样的SAD算法及其VLSI结构.该算法先将当前块和参考块像素划分成2×2的子块进行平滑和重采样,再进行7种可变块大小的SAD运算,以有效地降低SAD运算中级联加法器的深度和宽度,减少硬件代价.实验结果表明,该算法的编码性能与SAD标准算法的RDO曲线相比偏差小于1%,而硬件面积和功耗在不同的综合时钟频率下可节省53%以上.鉴于其优良的硬件性能,文中算法及其结构非常适合高并行度的H.264 VLSI解决方案.展开更多
<span style="font-family:Verdana;">The Near-equatorial orbit (NEqO) satellite represent</span><span style="font-family:Verdana;">s</span><span style="font-family:Ver...<span style="font-family:Verdana;">The Near-equatorial orbit (NEqO) satellite represent</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> a new generation of optical satellite images characterized by nonlinear distortion when captured. Conventional modeling techniques are insufficient to overcome the geometric distortion in these satellite images. This study proposes a new methodology for overcom</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> the geometric distortion of the NEqO images. The data used are obtained from RazakSAT and SPOT-5 satellite images in Malaysia. The method starts with applying the RI-SIFT algorithm to extract control points (CPs) automatically. These CPs are used to solve for the transformation parameters of the geometric correction model by applying spline transformations. The result </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">verified through statistical comparison: 1) geometric correction on the RazakSAT image is performed with Spot satellite image with using first-order polynomial trans-formation. 2) Then calculate the root mean square error (RMSE)</span><span style="font-family:Verdana;">. </span><span style="font-family:;" "=""><span style="font-family:Verdana;">3) Compare the calculated RMSE with that obtained from the first step with that of the proposed method. The RMSE value of the geometric corrections using the proposed method was 7.08 × 10</span><sup><span style="font-family:Verdana;"><span style="white-space:nowrap;">−</span>9</span></sup><span style="font-family:Verdana;"> m. The proposed method provides promising results.</span></span>展开更多
提出一种数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩模式决策算法的硬件实现方案,为面向低延时的浅压缩场景提供更加适配的编码方案,并减少使用的硬件资源。该方案通过计算不同预测模式下编码当前像素块所需的...提出一种数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩模式决策算法的硬件实现方案,为面向低延时的浅压缩场景提供更加适配的编码方案,并减少使用的硬件资源。该方案通过计算不同预测模式下编码当前像素块所需的比特代价和不同预测模式下重建像素块与原始块的绝对误差和(Sum of Absolute Difference,SAD)值,快速决策出最优的预测模式,提高了系统的效率和稳定性,使得系统在图像质量和处理速度两个方面都能够得到良好的性能,有效改善面向低延时浅压缩场景的编码效果,更好地满足实际应用需求。展开更多
文摘Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively.
文摘以硬件代价优化为目的,对H.264宏块级的VBSME SAD VLSI结构进行了详细的分析,提出一种像素平滑重采样的SAD算法及其VLSI结构.该算法先将当前块和参考块像素划分成2×2的子块进行平滑和重采样,再进行7种可变块大小的SAD运算,以有效地降低SAD运算中级联加法器的深度和宽度,减少硬件代价.实验结果表明,该算法的编码性能与SAD标准算法的RDO曲线相比偏差小于1%,而硬件面积和功耗在不同的综合时钟频率下可节省53%以上.鉴于其优良的硬件性能,文中算法及其结构非常适合高并行度的H.264 VLSI解决方案.
文摘<span style="font-family:Verdana;">The Near-equatorial orbit (NEqO) satellite represent</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> a new generation of optical satellite images characterized by nonlinear distortion when captured. Conventional modeling techniques are insufficient to overcome the geometric distortion in these satellite images. This study proposes a new methodology for overcom</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> the geometric distortion of the NEqO images. The data used are obtained from RazakSAT and SPOT-5 satellite images in Malaysia. The method starts with applying the RI-SIFT algorithm to extract control points (CPs) automatically. These CPs are used to solve for the transformation parameters of the geometric correction model by applying spline transformations. The result </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">verified through statistical comparison: 1) geometric correction on the RazakSAT image is performed with Spot satellite image with using first-order polynomial trans-formation. 2) Then calculate the root mean square error (RMSE)</span><span style="font-family:Verdana;">. </span><span style="font-family:;" "=""><span style="font-family:Verdana;">3) Compare the calculated RMSE with that obtained from the first step with that of the proposed method. The RMSE value of the geometric corrections using the proposed method was 7.08 × 10</span><sup><span style="font-family:Verdana;"><span style="white-space:nowrap;">−</span>9</span></sup><span style="font-family:Verdana;"> m. The proposed method provides promising results.</span></span>
文摘提出一种数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩模式决策算法的硬件实现方案,为面向低延时的浅压缩场景提供更加适配的编码方案,并减少使用的硬件资源。该方案通过计算不同预测模式下编码当前像素块所需的比特代价和不同预测模式下重建像素块与原始块的绝对误差和(Sum of Absolute Difference,SAD)值,快速决策出最优的预测模式,提高了系统的效率和稳定性,使得系统在图像质量和处理速度两个方面都能够得到良好的性能,有效改善面向低延时浅压缩场景的编码效果,更好地满足实际应用需求。