Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Seri...Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Serial Genetic Algorithm Decoder (SGAD) for decoding Low Density Parity Check (LDPC) codes. The results show that the proposed algorithm gives large gains over sum-product decoder, which proves its efficiency.展开更多
In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-of...In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-off is shown clearly and demonstrated with the paradigm of hybrid decoding. For regular LDPC code, the SNR-threshold performance and error-floor performance could be improved to the optimal level of ML decoding if the decoding complexity is progressively increased, usually corresponding to the near-ML decoding with progressively increased size of list. For irregular LDPC code, the SNR-threshold performance and error-floor performance could only be improved to a bottle-neck even with unlimited decoding complexity. However, with the technique of CRC-aided hybrid decoding, the ML performance could be greatly improved and approached with reasonable complexity thanks to the improved code-weight distribution from the concatenation of CRC and irregular LDPC code. Finally, CRC-aided 5GNR-LDPC code is evaluated and the capacity-approaching capability is shown.展开更多
提出一种简单高效的GF(q)-LDPC码译码算法,将对数似然比和积译码算法中的雅可比对数利用一阶泰勒级数近似,从而降低译码时校验点计算的复杂度.与目前广泛应用的O ffset m in-sum算法相比较,在BER为10-4处性能有0.2 dB左右的提升,并且本...提出一种简单高效的GF(q)-LDPC码译码算法,将对数似然比和积译码算法中的雅可比对数利用一阶泰勒级数近似,从而降低译码时校验点计算的复杂度.与目前广泛应用的O ffset m in-sum算法相比较,在BER为10-4处性能有0.2 dB左右的提升,并且本算法中的参数设计独立于有限域的阶数.展开更多
文摘Genetic algorithms are successfully used for decoding some classes of error correcting codes, and offer very good performances for solving large optimization problems. This article proposes a new decoder based on Serial Genetic Algorithm Decoder (SGAD) for decoding Low Density Parity Check (LDPC) codes. The results show that the proposed algorithm gives large gains over sum-product decoder, which proves its efficiency.
文摘In this paper, both the high-complexity near-ML list decoding and the low-complexity belief propagation decoding are tested for some well-known regular and irregular LDPC codes. The complexity and performance trade-off is shown clearly and demonstrated with the paradigm of hybrid decoding. For regular LDPC code, the SNR-threshold performance and error-floor performance could be improved to the optimal level of ML decoding if the decoding complexity is progressively increased, usually corresponding to the near-ML decoding with progressively increased size of list. For irregular LDPC code, the SNR-threshold performance and error-floor performance could only be improved to a bottle-neck even with unlimited decoding complexity. However, with the technique of CRC-aided hybrid decoding, the ML performance could be greatly improved and approached with reasonable complexity thanks to the improved code-weight distribution from the concatenation of CRC and irregular LDPC code. Finally, CRC-aided 5GNR-LDPC code is evaluated and the capacity-approaching capability is shown.