We use the sampling representations associated with Sturm-Liouville difference operators to derive generalized integral-valued trigonometric sums. This extends the known results where zeros of Chebyshev polynomials of...We use the sampling representations associated with Sturm-Liouville difference operators to derive generalized integral-valued trigonometric sums. This extends the known results where zeros of Chebyshev polynomials of the first kind are involved to the use of the eigenvalues of difference operators, which leads to new identities. In these identities Bernoulli's numbers play a role similar to that of Euler's in the old ones. Our technique differs from that of Byrne-Smith (1997) and Berndt-Yeap (2002).展开更多
In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather ar...In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather arbitrary weight sequences. This extends the earlier work on mixing random variables展开更多
Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a...Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a fairly general condition on the weight dk= k-1 exp(lnβk),0≤β〈1.And in a sense,our results have reached the optimal form.展开更多
文摘We use the sampling representations associated with Sturm-Liouville difference operators to derive generalized integral-valued trigonometric sums. This extends the known results where zeros of Chebyshev polynomials of the first kind are involved to the use of the eigenvalues of difference operators, which leads to new identities. In these identities Bernoulli's numbers play a role similar to that of Euler's in the old ones. Our technique differs from that of Byrne-Smith (1997) and Berndt-Yeap (2002).
文摘In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather arbitrary weight sequences. This extends the earlier work on mixing random variables
基金Supported by the National Natural Science Foundation of China(11061012)Project Supported by Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning([2011]47)the Guangxi Natural Science Foundation of China(2012GXNSFAA053010)
文摘Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a fairly general condition on the weight dk= k-1 exp(lnβk),0≤β〈1.And in a sense,our results have reached the optimal form.