期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
Climatic Features Related to Eastern China Summer Rainfalls in the NCAR CCM3 被引量:37
1
作者 宇如聪 李薇 +4 位作者 张学洪 刘屹岷 俞永强 刘海龙 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第4期503-518,共16页
The climatic features associated with the eastern China summer rainfalls (ECSR) are examined in the National Center for Atmospheric Research (NCAR) Community Climate Model Version 3 (CCM3) of the United States of Amer... The climatic features associated with the eastern China summer rainfalls (ECSR) are examined in the National Center for Atmospheric Research (NCAR) Community Climate Model Version 3 (CCM3) of the United States of America, and run with time-evolving sea surface temperature (SST) from September 1978 to August 1993. The CCM3 is shown to capture the salient seasonal features of ECSR. As many other climate models, however, there are some unrealistic projections of ECSR in the CCM3. The most unacceptable one is the erroneously intensified precipitation center on the east periphery of the Tibetan Plateau and its northeastward extension. The artificial strong rainfall center is fairly assessed by comparing with the products of the station rainfall data, Xie and Arkin (1996) rainfall data and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (Gibson et al., 1997). The physical processes involved in the formation of the rainfall center are discussed. The preliminary conclusion reveals that it is the overestimated sensible heating over and around the Tibetan Plateau in the CCM3 that causes the heavy rainfall. The unreal strong surface sensible heating over the southeast and northeast of Tibetan Plateau favors the forming of a powerful subtropical anticyclone over the eastern China. The fake enclosed subtropical anticyclone center makes the moist southwest wind fasten on the east periphery of the Tibetan Plateau and extend to its northeast. In the southeast coast of China, locating on the southeast side of the subtropical anticyclone, the southwest monsoon is decreased and even replaced by northeast wind in some cases. In the CCM3, therefore, the precipitation is exaggerated on the east periphery of the Tibetan Plateau and its northeast extension and is underestimated in the southeast coast of China. Key words Eastern China summer rainfall - Model validation - Subtropical anticyclone - Diabatic heating This study was sponsored by Chinese Academy of Sciences under grant “ Hundred Talents” for “ Validation of Coupled Climate models” and the National Natural Science Foundation of China (Grant No.49823002), and IAP innovation fund (No. 8-1204). 展开更多
关键词 Eastern China summer rainfall Model validation Subtropical anticyclone Diabatic heating
下载PDF
INSTABILITY OF THE TELECONNECTION OF SUMMER RAINFALLS BETWEEN NORTH CHINA AND INDIA 被引量:2
2
作者 黄建斌 王绍武 《Journal of Tropical Meteorology》 SCIE 2007年第1期1-7,共7页
Summer rainfall variations in North China closely relate to that in India. It seems that an alternation of signs of“+, -, +” exists in the geographical pattern of the correlation in summer rainfall from North Chin... Summer rainfall variations in North China closely relate to that in India. It seems that an alternation of signs of“+, -, +” exists in the geographical pattern of the correlation in summer rainfall from North China to India through the Tibetan Plateau. However, it appears that the teleconnection of summer rainfall variations between North China and India is unstable. Over 1945 - 1974, the correlation coefficient (hereafter as CC) is as large as 0.7. In contrast, the CC is about -0.3 over 1827-1856. Further studies, based on observations starting from 1813, showed that the correlation is strong when summer rainfalls in both North China and India are large, and vice versa. In order to find what induce the change of the teleconnection, variations of summer rainfall in both North China and India, mean sea surface temperature (SST) in the eastern equatorial Pacific and the frequency of ENSO events were examined in relation to the change of the teleconnection. The result showed that the teleconnection appears weak when the mean SST is high and the frequency ofLa Nifia events is low; the teleconnection is strong when the mean SST is low and the frequency ofLa Nina events is high. At last, it is notable that La Nifia happens in only 3 years during the recent 30 years from 1976 to 2005 and the teleconnection becomes weak too. 展开更多
关键词 North China INDIA summer rainfall TELECONNECTION INSTABILITY
下载PDF
The Combined Effects of the Tropical and Extratropical Quasi-biweekly Oscillations on the Record-setting Mei-yu Rainfall in the Summer of 2020
3
作者 Zhen HUANG Shuanglin LI +1 位作者 Jianying LI Chao ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第4期663-681,I0002-I0014,共32页
During June-July 2020,the strongest recorded mei-yu rainfall occurred in the middle and lower reaches of the Yangtze River.The rainfall processes exhibited an obvious quasi-biweekly(biweekly in brief)variability,and t... During June-July 2020,the strongest recorded mei-yu rainfall occurred in the middle and lower reaches of the Yangtze River.The rainfall processes exhibited an obvious quasi-biweekly(biweekly in brief)variability,and there are altogether five cycles.It is found that the biweekly rainfall cycle mainly arises from the collaborative effects of biweekly variabilities from both the tropics and extratropics.As for the tropics,the biweekly meridional march and retreat of the western Pacific subtropical high(WPSH)is particularly evident.As for the extratropics,geopotential height anomalies near Lake Baikal are active.The former is attributed to the intensified biweekly activity of the southwest-northeast oriented EastAsian Pacific wave train(EAP)originating from the tropical western Pacific,while the latter is associated with the biweekly activities of the eastward propagating Eurasia mid-high latitudinal wave train and the westward propagating North Pacific wave train.Why the biweekly activities of these wave trains intensified is further diagnosed from the perspective of thermodynamical forcing and also from the modulation of interannual background on intraseasonal variability.It is found that the strongest recorded convection anchoring over the tropical western Indian Ocean(IO)triggers anomalous descent over the tropical western Pacific,which modulates the biweekly activity of the EAP.Meanwhile,the anomalous diabatic heating over the IO causes changes of the meridional thermodynamic contrast across the IO to the high latitudes,which modulates the extratropical wave trains.A further diagnosis of barotropic kinetic energy conversion suggests that the active occurrence of two extratropical biweekly wave trains is attributed to the increased efficiency of energy conversion from basic flow.The westward propagation of the extratropical North Pacific wave train is attributed to the weakened and northshifted upper-level westerly,which is caused by the SST warmth near the Kuroshio extension. 展开更多
关键词 strongest recorded mei-yu rainfall in summer 2020 quasi-biweekly variability tropical convection westward propagation of the extratropical North Pacific wave train SSTA in the North Pacific
下载PDF
Pacific Sea Surface Temperature Effect Summer Rainfall in Huanghuai, Jianghuai Region in China
4
作者 Tiantian Liu Xin Wang 《Open Journal of Applied Sciences》 2023年第8期1440-1445,共6页
Summer Precipitation in Eastern China was closely related to the global sea surface temperature field. In this paper, the impact of the main sea surface temperature anomaly on flood season precipitation in China’s Hu... Summer Precipitation in Eastern China was closely related to the global sea surface temperature field. In this paper, the impact of the main sea surface temperature anomaly on flood season precipitation in China’s Huanghuai and Jianghuai regions is examined as an external forcing factor for short-term climate prediction. Through analysis of global sea surface temperature anomalies and regional anomalies in Huanghuai and Jianghuai, a significant effect related to the main area, the North Pacific region, and the Nino3 corresponding index calculation is found. Various key areas are examined for their relevance, and finally, the mechanism of summer precipitation in two key zones, China’s Huanghuai and Jianghuai regions, is briefly discussed. The main implication is the prediction of season precipitation based on the external forcing signal of sea surface temperature anomaly in China’s Huanghuai and Jianghuai regions. 展开更多
关键词 summer Rainfall Sea Surface Temperature II Rain Type RELATIVE
下载PDF
Diurnal Variation Characteristics of Summer Rainfall in Shenyang 被引量:1
5
作者 杨森 周晓珊 高杰 《Meteorological and Environmental Research》 CAS 2010年第2期16-18,共3页
By the hourly rainfall record in Shenyang over 48 years from 1961 to 2008,the basic climate characteristics of diurnal variation in summer rainfall were studied in Shenyang.The results showed that diurnal variation in... By the hourly rainfall record in Shenyang over 48 years from 1961 to 2008,the basic climate characteristics of diurnal variation in summer rainfall were studied in Shenyang.The results showed that diurnal variation in summer rainfall displayed coincident rules in precipitation and rainfall frequency in Shenyang.The diurnal variation had two peak value intervals.One peak value was in afternoon to dusk.The other peak value happened in early morning.From afternoon to the first half of the night,the rainfall peak value was mainly caused by the rainfall event whose duration was less than 6 hours.From latter half of the night to early morning,the rainfall peak value was mainly caused by the rainfall event whose duration was more than 6 hours. 展开更多
关键词 Diurnal variation summer rainfall Rainfall persistence Shenyang China
下载PDF
Climate state of the Three Gorges Region in the Yangtze River basin in 2022–2023
6
作者 Tong Cui Xianyan Chen +3 位作者 Xukai Zou Linhai Sun Qiang Zhang Hongling Zeng 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期61-66,共6页
Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 ... Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 were analyzed.For the TGR,the average annual temperature for 2022 and 2023 was 0.8℃ and 0.4℃ higher than normal,respectively,making them the two warmest years in the past decade.In 2022,the TGR experienced its warmest summer on record.The average air temperature was 2.4℃ higher than the average,and there were 24.8 days of above-average high temperature days during summer.Rainfall in the TGR varied significantly between 2022 and 2023.Annual rainfall was 18.4%below normal and drier than normal in most parts of the region.In contrast,the precipitation in 2023 was considerably higher than the long-term average,and above normal for almost the entire year.The average wind speed exhibited minimal variation between the two years.However,the number of foggy days and relative humidity increased in 2023 compared to 2022.In 2022–2023,the TGR mainly experienced meteorological disasters such as extreme high temperatures,regional heavy rain and flooding,overcast rain,and inverted spring chill.Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022. 展开更多
关键词 Three Gorges Region Climate state Extreme high temperature Torrential summer rainfall Climate analysis
下载PDF
Possible Impacts of the Arctic Oscillation on the Interdecadal Variation of Summer Monsoon Rainfall in East Asia 被引量:42
7
作者 琚建华 吕俊梅 +1 位作者 曹杰 任菊章 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第1期39-48,共10页
The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the vari... The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation. 展开更多
关键词 the Arctic Oscillation interdecadal variation summer monsoon rainfall land-sea heat contrast
下载PDF
The Impact of Atmospheric Heat Sources over the Eastern Tibetan Plateau and the Tropical Western Pacific on the Summer Rainfall over the Yangtze-River Basin 被引量:16
8
作者 简茂球 乔云亭 +1 位作者 袁卓建 罗会邦 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第1期149-155,共7页
The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in Chin... The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific. 展开更多
关键词 heat sources eastern Tibetan Plateau tropical western Pacific summer rainfall Yangtze River basin
下载PDF
On the Association between Spring Arctic Sea Ice Concentration and Chinese Summer Rainfall:A Further Study 被引量:41
9
作者 武炳义 张人禾 Bin WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第4期666-678,共13页
In our previous study, a statistical linkage between the spring Arctic sea ice concentration (SIC) and the succeeding Chinese summer rainfall during the period 1968-2005 was identified. This linkage is demonstrated ... In our previous study, a statistical linkage between the spring Arctic sea ice concentration (SIC) and the succeeding Chinese summer rainfall during the period 1968-2005 was identified. This linkage is demonstrated by the leading singular value decomposition (SVD) that accounts for 19% of the co-variance. Both spring SIC and Chinese summer rainfall exhibit a coherent interannual variability and two apparent interdecadal variations that occurred in the late 1970s and the early 1990s. The combined impacts of both spring Arctic SIC and Eurasian snow cover on the summer Eurasian wave train may explain their statistical linkage. In this study, we show that evolution of atmospheric circulation anomalies from spring to summer, to a great extent, may explain the spatial distribution of spring and summer Arctic SIC anomalies, and is dynamically consistent with Chinese summer rainfall anomalies in recent decades. The association between spring Arctic SIC and Chinese summer rainfall on interannual time scales is more important relative to interdecadal time scales. The summer Arctic dipole anomaly may serve as the bridge linking the spring Arctic SIC and Chinese summer rainfall, and their coherent interdecadal variations may reflect the feedback of spring SIC variability on the atmosphere. The summer Arctic dipole anomaly shows a closer relationship with the Chinese summer rainfall relative to the Arctic Oscillation. 展开更多
关键词 spring Arctic sea ice concentration summer rainfall Arctic dipole anomaly interannual and interdecadal variations
下载PDF
Eurasian Snow Cover Variability and Its Association with Summer Rainfall in China 被引量:45
10
作者 武炳义 杨琨 张人禾 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期31-44,共14页
This study investigates the statistical linkage between summer rainfall in China and the preceding spring Eurasian snow water equivalent (SWE), using the datasets of summer rainfall observations from 513 stations, s... This study investigates the statistical linkage between summer rainfall in China and the preceding spring Eurasian snow water equivalent (SWE), using the datasets of summer rainfall observations from 513 stations, satellite-observed snow water equivalent, and atmospheric circulation variables in the NCEP/NCAR reanalysis during the period from 1979 to 2004. The first two coupled modes are identified by using the singular value decomposition (SVD) method. The leading SVD mode of the spring SWE variability shows a coherent negative anomaly in most of Eurasia with the opposite anomaly in some small areas of the Tibetan Plateau and East Asia. The mode displays strong interannual variability, superposed on an interdecadal variation that occurred in the late 1980s, with persistent negative phases in 1979-1987 and frequent positive phases afterwards. When the leading mode is in its positive phase, it corresponds to less SWE in spring throughout most of Eurasia. Meanwhile, excessive SWE in some small areas of the Tibetan Plateau and East Asia, summer rainfall in South and Southeast China tends to be increased, whereas it would be decreased in the up-reaches of the Yellow River. In recent two decades, the decreased spring SWE in Eurasia may be one of reasons for severe droughts in North and Northeast China and much more significant rainfall events in South and Southeast China. The second SVD mode of the spring SWE variability shows opposite spatial variations in western and eastern Eurasia, while most of the Tibetan Plateau and East Asia are in phase. This mode significantly correlates with the succeeding summer rainfall in North and Northeast China, that is, less spring SWE in western Eurasia and excessive SWE in eastern Eurasia and the Tibetan Plateau tend to be associated with decreased summer rainfall in North and Northeast China. 展开更多
关键词 Eurasian snow cover Chinese summer rainfall interdecadal variation
下载PDF
Why Was the Strengthening of Rainfall in Summer over the Yangtze River Valley in 2016 Less Pronounced than that in 1998 under Similar Preceding El Nino Events?Role of Midlatitude Circulation in August 被引量:13
11
作者 chaofan li wei chen +1 位作者 xiaowei hong riyu lu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第11期1290-1300,共11页
It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of E1 Nifio, as demonstrated by the catastrophic flooding suffered in the summer of 1998.... It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of E1 Nifio, as demonstrated by the catastrophic flooding suffered in the summer of 1998. Nevertheless, the rainfall over the YRV in the summer of 2016 was much weaker than that in 1998, despite the intensity of the 2016 E1 Nifio having been as strong as that in 1998. A thorough comparison of the YRV summer rainfall anomaly between 2016 and 1998 suggests that the difference was caused by the sub-seasonal variation in the YRV rainfall anomaly between these two years, principally in August. The precipitation anomaly was negative in August 2016--different to the positive anomaly of 1998. 展开更多
关键词 Yangtze River valley summer rainfall super El Nio sub-seasonal variation Silk Road Pattern
下载PDF
Decadal Variation of Summer Rainfall in the Yangtze- Huaihe River Valley and Its Relationship to Atmospheric Circulation Anomalies over East Asia and Western North Pacific 被引量:10
12
作者 吴仁广 陈烈庭 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第4期80-92,共13页
Decadal variations of summer rainfall during 1951 through 1990 are analyzed by using summer rainfall data of 160 stations in China. Four major patterns of decadal variations are identified. The decadal variations of s... Decadal variations of summer rainfall during 1951 through 1990 are analyzed by using summer rainfall data of 160 stations in China. Four major patterns of decadal variations are identified. The decadal variations of summer rainfall showed northward shift in the eastern China from South China through the Yangtze-Huaihe River to North China. Summer rainfall in the Yangtze-Huaihe River valley underwent two obvious decadal transitions during the 40 years: one from rainy period to drought period in the end of the 1950′s, the other from drought period to rainy period in the late 1970′s. Correspondingly, the atmospheric circulation over East Asia through the western North Pacific showed two similar obvious transitions. The East Asian/Pacific (EAP) pattern switched from high index to low index in the end of the 1950′s and from low index to high index in the late 1970′s, respectively. Hence, summer rainfall in the Yangtze-Huaihe River valley is closely associated with the EAP pattern not only in the interannual variation but also in the decadal variation. 展开更多
关键词 summer rainfall Decadal variation EAP pattern
下载PDF
Relationship between Indian and East Asian Summer Rainfall Variations 被引量:7
13
作者 Renguang WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第1期4-15,共12页
The Indian and East Asian summer monsoons are two components of the whole Asian summer monsoon system. Previous studies have indicated in-phase and out-of-phase variations between Indian and East Asian summer rainfall... The Indian and East Asian summer monsoons are two components of the whole Asian summer monsoon system. Previous studies have indicated in-phase and out-of-phase variations between Indian and East Asian summer rainfall. The present study reviews the current understanding of the connection between Indian and East Asian summer rainfall. The review covers the relationship of northern China, southern Japan, and South Korean summer rainfall with Indian summer rainfall; the atmospheric circulation anomalies connecting Indian and East Asian summer rainfall variations; the long-term change in the connection between Indian and northern China rainfall and the plausible reasons for the change; and the influence of ENSO on the relationship between Indian and East Asian summer rainfall and its change. While much progress has been made about the relationship between Indian and East Asian summer rainfall variations, there are several remaining issues that need investigation. These include the processes involved in the connection between Indian and East Asian summer rainfall, the non-stationarity of the connection and the plausible reasons, the influences of ENSO on the relationship, the performance of climate models in simulating the relationship between Indian and East Asian summer rainfall, and the relationship between Indian and East Asian rainfall intraseasonal fluctuations. 展开更多
关键词 Indian summer rainfall East Asian summer rainfall atmospheric circulation long-term change ENSO
下载PDF
Spatiotemporal Variations of Summer Rainfall over Eastern China during 1880-1999(1) 被引量:12
14
作者 李晓东 朱亚芬 钱维宏 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第6期1055-1068,共14页
By applying rotated complex empirical orthogonal function (RCEOF) analysis on 1880-1999 summer rainfall at 28 selected stations over the east part of China, the spatio-temporal variations of China summer rainfall are ... By applying rotated complex empirical orthogonal function (RCEOF) analysis on 1880-1999 summer rainfall at 28 selected stations over the east part of China, the spatio-temporal variations of China summer rainfall are investigated. Six divisions are identified, showing strong temporal variability, the middle and lower reaches of the Yangtze River, the Huaihe River, Southeast China, North China, Southwest China, and Northeast China. The locations of all divisions except Southwest China are in a good agreement with those of the rainband which moves northward from Southeast China to Northeast China from June-August. The phase relationship revealed by the RCEOF analysis suggests that rainfall anomalies in the middle and lower reaches of the Yangtze River, Southeast China, and Northeast China are all characterized by a stationary wave, while a traveling wave is more pronounced in the Huaihe River division, North China, and Southwest China. The fourth RCEOF mode indicates that rainfall anomalies can propagate from south of Northeast China across lower reaches of the Huanghe River and the Huaihe River to the lower reaches of the Yangtze River. A 20-25-year oscillation is found at the middle and lower reaches of the Yangtze River, the Huaihe River valley, North China, and Northeast China. The middle and lower reaches of the Yangtze River and Northeast China also show an approximately-60-year oscillation. Northeast China and the Huaihe River division are dominated by a 36-year and a 70-80-year oscillation, respectively. An 11-year oscillation is also evident in North China, with a periodicity similar to sunspot activity. The interdecadal variability in the middle and lower reaches of the Yangtze River, the Huaihe River valley, and North China shows a significant positive correlation with the solar activity. 展开更多
关键词 empirical orthogonal function (EOF) rotated complex EOF (RCEOF) China summer rainfall drought and flood anomaly stationary wave traveling wave interdecadal variability
下载PDF
Interannual and Decadal Variations of Snow Cover overQinghai-Xizang Plateau and Their Relationships to Summer Monsoon Rainfall in China 被引量:53
15
作者 陈烈庭 吴仁广 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第1期18-30,共13页
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is f... Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I). 展开更多
关键词 Snow cover over Qinghai-Xizang Plateau summer monsoon rainfall in China Interannual and decadal variations
下载PDF
Large Scale Aspects of India-China Summer Monsoon Rainfall 被引量:17
16
作者 R. H. Kripalani S. V. Singh 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第1期71-84,共14页
This study investigates the dominant modes of variability in monthly and seasonal rainfall over the India-China region mainly through Empirical Orthogonal Function (EOF) analysis. The EOFs have shown that whereas the ... This study investigates the dominant modes of variability in monthly and seasonal rainfall over the India-China region mainly through Empirical Orthogonal Function (EOF) analysis. The EOFs have shown that whereas the rainfall over India varies as one coherent zone, that over China varies in east-west oriented bands. The influence of this banded structure extends well into India.Relationship of rainfall with large scale parameters such as the subtropical ridge over the Indian and the western Pacific regions, Southern Oscillation, the Northern Hemispheric surface air temperature and stratospheric winds have also been investigated. These results show that the rainfall over the area around 40°N, 110°E over China is highly related with rainfall over India. The subtropical ridge over the Indian region is an important predictor over India as well an over the northern China region. ' 展开更多
关键词 OVER In Large Scale Aspects of India-China summer Monsoon Rainfall EOF
下载PDF
Influence of Internal Decadal Variability on the Summer Rainfall in Eastern China as Simulated by CCSM4 被引量:7
17
作者 Yali ZHU Tao WANG Jiehua MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第6期706-714,共9页
The combined impact of the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) on the summer rainfall in eastern China was investigated using CCSM4. The strongest signals occur with the c... The combined impact of the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) on the summer rainfall in eastern China was investigated using CCSM4. The strongest signals occur with the combination of a positive PDO and a negative AMO (+PDO- AMO), as well as a negative PDO and a positive AMO (-PDO + AMO). For the +PDO- AMO set, significant positive rainfall anomalies occur over the lower reaches of the Yangtze River valley (YR), when the East Asian summer monsoon becomes weaker, while the East Asian westerly jet stream becomes stronger, and ascending motion over the YR becomes enhanced due to the jet-related secondary circulation. Contrary anomalies occur over East Asia for the -PDO + AMO set. The influence of these two combinations of PDO and AMO on the summer rainfall in eastern China can also be observed in the two interdecadal rainfall changes in eastern China in the late 1970s and late 1990s. 展开更多
关键词 Pacific Decadal Oscillation Atlantic Multidecadal Oscillation eastern China summer rainfall CCSM4
下载PDF
Simulated Relationship between Wintertime ENSO and East Asian Summer Rainfall: From CMIP3 to CMIP6 被引量:7
18
作者 Yuanhai FU Zhongda LIN Tao WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第2期221-236,共16页
El Niño-Southern Oscillation(ENSO)events have a strong influence on East Asian summer rainfall(EASR).This paper investigates the simulated ENSO-EASR relationship in CMIP6 models and compares the results with thos... El Niño-Southern Oscillation(ENSO)events have a strong influence on East Asian summer rainfall(EASR).This paper investigates the simulated ENSO-EASR relationship in CMIP6 models and compares the results with those in CMIP3 and CMIP5 models.In general,the CMIP6 models show almost no appreciable progress in representing the ENSO-EASR relationship compared with the CMIP5 models.The correlation coefficients in the CMIP6 models are relatively smaller and exhibit a slightly greater intermodel diversity than those in the CMIP5 models.Three physical processes related to the delayed effect of ENSO on EASR are further analyzed.Results show that,firstly,the relationships between ENSO and the tropical Indian Ocean(TIO)sea surface temperature(SST)in the CMIP6 models are more realistic,stronger,and have less intermodel diversity than those in the CMIP3 and CMIP5 models.Secondly,the teleconnections between the TIO SST and Philippine Sea convection(PSC)in the CMIP6 models are almost the same as those in the CMIP5 models,and stronger than those in the CMIP3 models.Finally,the CMIP3,CMIP5,and CMIP6 models exhibit essentially identical capabilities in representing the PSC-EASR relationship.Almost all the three generations of models underestimate the ENSO-EASR,TIO SST-PSC,and PSC-EASR relationships.Moreover,almost all the CMIP6 models that successfully capture the significant TIO SST-PSC relationship realistically simulate the ENSO-EASR relationship and vice versa,which is,however,not the case in the CMIP5 models. 展开更多
关键词 ENSO East Asian summer rainfall CMIP6 tropical Indian Ocean SST Philippine Sea convection TELECONNECTION
下载PDF
A Seasonal Prediction Model for the Summer Rainfall in Northeast China Using the Year-To-Year Increment Approach 被引量:9
19
作者 ZHU Ya-Li 《Atmospheric and Oceanic Science Letters》 2011年第3期146-150,共5页
Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,includ... Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China. 展开更多
关键词 Northeast China summer rainfall seasonalprediction year-to-year increment
下载PDF
Improving Multi-model Ensemble Probabilistic Prediction of Yangtze River Valley Summer Rainfall 被引量:5
20
作者 LI Fang LIN Zhongda 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第4期497-504,共8页
Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier mu... Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier multi-model ensemble(MME) prediction schemes for summer rainfall over China focus on single-value prediction, which cannot provide the necessary uncertainty information, while commonly-used ensemble schemes for probability density function(PDF) prediction are not adapted to YRV summer rainfall prediction. In the present study, an MME PDF prediction scheme is proposed based on the ENSEMBLES hindcasts. It is similar to the earlier Bayesian ensemble prediction scheme, but with optimization of ensemble members and a revision of the variance modeling of the likelihood function. The optimized ensemble members are regressed YRV summer rainfall with factors selected from model outputs of synchronous 500-h Pa geopotential height as predictors. The revised variance modeling of the likelihood function is a simple linear regression with ensemble spread as the predictor. The cross-validation skill of 1960–2002 YRV summer rainfall prediction shows that the new scheme produces a skillful PDF prediction, and is much better-calibrated, sharper, and more accurate than the earlier Bayesian ensemble and raw ensemble. 展开更多
关键词 probability density function seasonal prediction multi-model ensemble Yangtze River valley summer rainfall Bayesian scheme
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部