The newly released super high-yielding hybrid rice combinations, Yueza 122, Fengyou 428, Peiza 67, and the super high-yielding conventional cultivars, Guangchao 3 and Shengtai 1, were grown in both early and late seas...The newly released super high-yielding hybrid rice combinations, Yueza 122, Fengyou 428, Peiza 67, and the super high-yielding conventional cultivars, Guangchao 3 and Shengtai 1, were grown in both early and late seasons. The morphological characters of each population were investigated at the heading stage, and the data were analyzed by using ANOVY and other statistic methods. The plant ideal morphological characters at the heading stage were established as follows: 1 ) for the early-season cropping, 90-105 cm plant height; 11-12 tillers per plant; 35-40 em length and 2.1-2.2 cm width of flag leaf; 46-50 cm length and 1.8-2.1 cm width of the second leaf from the top (L2); 59-64 cm length and 1.4-1.9 cm width of the third leaf from the top (L3); 7°-14°, 18° and 200-33° for the ideal leaf angles of the flag leaf, L2 and L3, respectively; 2) for the late-season cropping, 90-100 cm plant height; 9-15 tillers per plant; 30-41 cm length and 1.8-2.0 cm width of flag leaf; 53-61 cm length and 1.3-1.8 cm width of L2; 52-58 cm length and 1.2-1.5 cm width of L3; 9°-19°, 15°-37° and 16°-49° for the ideal leaf angles of the flag leaf, L2 and L3, respectively. The main physiological characteristics of these varieties were also analyzed.展开更多
In a field experiment, rice cultivar Shanyou 63 was used as a check cultivar to investigate the changes in activity of peroxidase and contents of malondialdehyde and soluble protein after full heading stage in flag le...In a field experiment, rice cultivar Shanyou 63 was used as a check cultivar to investigate the changes in activity of peroxidase and contents of malondialdehyde and soluble protein after full heading stage in flag leaves of two super high-yielding inbred rice, including Shengtai 1 and Yuxiangyouzhan. The results showed that the peroxidase activities and soluble protein contents in the leaves of the three cultivars tended to increase gradually to peak values and thereafter descended during stage after full heading. Moreover, both the peroxidase activities and soluble protein contents of Shengtai 1 and Yuxiangyouzhan peaked at 8 days after full heading, which was compared with that of Shanyou 63 at 4 days later. Meanwhile, the malondialdehyde contents in the leaves of the three cultivars increased gradually after full heading stage. In addition, activities of peroxidase and contents of malondialdehyde and soluble protein in different cultivars were various at the same time. In general, for Shengtai 1 and Yuxiangyouzhan, the peroxidase activities and soluble protein contents were higher than those of Shanyou 63, whereas the malondialdehyde contents were lower compared with that of Shanyou 63. And these features could make the senescence of leaf become later and slower and photosynthetic product was more in Shengtai 1 and Yuxiangyouzhan than that in Shanyou 63.展开更多
The nitrogen uptake, yield and its components for two super-high-yielding hybrid rice combinations, Guodao 6 and Eryou 7954 were investigated under different plant densities (15, 18, and 21 plants/m^2) and different...The nitrogen uptake, yield and its components for two super-high-yielding hybrid rice combinations, Guodao 6 and Eryou 7954 were investigated under different plant densities (15, 18, and 21 plants/m^2) and different nitrogen application rates (120, 150, 180, and 210 kg/hm^2). The experiment was conducted on loam soil during 2004-2006 at the experimental farm of the China National Rice Research Institute in Hangzhou, China. In these years, the two hybrid rice cleady showed higher yield at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Guodao 6 produced an average grain yield of 10 215.6 kg/hm^2 across the three years, while the yield of Eryou 7954 was 9 633.0 kg/hm^2. With fewer plants per unit-area and larger plants in the plots, the two hybrid rice produced more panicles per plant in three years. The highest nitrogen uptake of the two hybrid rice was at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Further increasing nitrogen application rate was not advantageous for nitrogen uptake in super-high-yielding rice under the same plant density.展开更多
The characteristics of dry matter production before and after heading and tne relationships between photosynthesis of flag leaves and dry matter accumulation in panicles were investigated on super high-yielding rice c...The characteristics of dry matter production before and after heading and tne relationships between photosynthesis of flag leaves and dry matter accumulation in panicles were investigated on super high-yielding rice cv. Xieyou 9308 (the yield of up to 12 t/ha) with rice cv. Xieyou 63 as a control. The results showed that (i) the capacity of dry matter production before and after heading in Xieyou 9308, i.e. biomass and daily dry matter production, was remarkably higher than that in Xieyou 63, especially after heading; (ii) CO2 assimilation capacity in flag leaves in Xieyou 9308, namely Leaf Source Capacity (LSC), was also significantly higher than that in Xieyou 63, and the supply of photosynthate in leaves and the demand of grain filling were completely synchronous in Xieyou 9308, but photosynthetic function in flag leaves in Xieyou 63 declined sharply 20 days after heading and it was not enough to meet the demand of grain filling. These results confirmed that high efficient photosynthetic function in leaves after heading and its complete synchronization with grain filling are the key approaches to super high yield of rice.展开更多
Based on meteorological data including daily sunshine duration, temperature and precipitation from 97 meteorological stations in Hunan province during the period of 1981—2010, in combination with the field experiment...Based on meteorological data including daily sunshine duration, temperature and precipitation from 97 meteorological stations in Hunan province during the period of 1981—2010, in combination with the field experiment in different places at different sowing dates, the precise climatic risk zoning of double cropping super rice cultivation has been studied by using the spatial interpolation method and other Geographical Information System(GIS)technologies. Three key climatic factors were selected including chilling in May, high temperature heat damage during July to early August and low temperature damage in autumn in this study. Furthermore, based on the analysis of climatic conditions suitable for double cropping super rice cultivation and climatic disasters, 8-22 ℃ active accumulated temperature, sunshine duration from late March to October, climatic risk index of the low temperature in autumn, and climatic risk index of chilling in May were selected as key climatic factors to study the precise agro-meteorological regionalization of double cropping super rice in Hunan province. The results showed that: the high-yielding zones of double cropping super rice in Hunan were mainly located in Zhuzhou, Hengyang, Yongzhou and Chenzhou City, the moderate-yielding zones were primarily located in the east and north reaches of Dongting Lake,together with most of Changsha, Zhuzhou and Xiangtan City, and other regions in Hunan were not suitable for double cropping super rice. These findings can provide valuable information for the large-scale cultivation of double cropping super rice in Hunan province.展开更多
Chunyou 284 is a medium- japonica hybrid combination,as well as an indica-japonica subspecific hyrbid with super-high yield,which was developed from Chunjiang 23A,a thermo-sensitive CMS line with very early anthesis t...Chunyou 284 is a medium- japonica hybrid combination,as well as an indica-japonica subspecific hyrbid with super-high yield,which was developed from Chunjiang 23A,a thermo-sensitive CMS line with very early anthesis time,and C84,an indica-japonica intermediate type restorer line with wide compatibility.This combination has the advantages of high yield potential,early maturity,excellent comprehensive agronomic traits and wide adaptability.It was approved by Jiangsu Provincial Crop Variety Approval Committee in June,2018.The breeding process,main characteristics,cultivation techniques and seed production points of the combination were introduced.展开更多
Liangyoupeijiu is a super high-yield hybrid rice. Despite its advantages with respect to yield and grain quality, it is sensitive to cold, which keeps it from being widely cultivated. We subjected Liangyoupeijiu seedl...Liangyoupeijiu is a super high-yield hybrid rice. Despite its advantages with respect to yield and grain quality, it is sensitive to cold, which keeps it from being widely cultivated. We subjected Liangyoupeijiu seedlings to 4 ℃ cold treatment, then extracted the leaf proteins. After 2-D gel electrophoresis separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, a series of differentially displayed proteins were identified. Some metabolism-associated proteins were found among the downregulated proteins, such as carbamoyl phosphate synthetase, transketolase 1, dihydrolipoamide dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase. The upregulated proteins included both stress-resistance proteins such as nucleoside diphosphate kinase I and proteins that are negative for rice growth, such as FtsH-like protein, plastid fusion and/or translocation factor (Pftf) and actin. Our results indicate that cold may inhibit Liangyoupeijiu growth through decreasing metabolic activity and damaging cell structure.展开更多
This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 ...This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 and 1995, respectively. Research on super hybrid rice, which was first launched by Ministry of Agriculture, China in 1996, is discussed, and the great progress of super hybrid rice had been achieved with a new yield record by 15.4 t ha^-1 in the 6.84 ha demonstration location in Xupu, Hunan Province, China in 2014. And the mechanism of heterosis, the techniques of hybrid seed production and the modern field managements in hybrid rice over the past decades are also discussed. Additionally, this article dealt with the intellectual property protection(IPR) and development of hybrid rice seed industry in China. Major factors that constrain hybrid rice development are analyzed and possible solutions to this problems are proposed. Finally, the authors present methods to further increase production yield, and propose an improvement for breeding super high-yielding hybrid rice based on these methods.展开更多
Cytoplasmic effects are important agronomical phenomena that have generated widespread interest in both theory and application. In the present study, five high yield rice cultivars(Oryza sativa L. ssp. japonica) in ...Cytoplasmic effects are important agronomical phenomena that have generated widespread interest in both theory and application. In the present study, five high yield rice cultivars(Oryza sativa L. ssp. japonica) in large-scale cultivation in northeast China were determined to possess Oryza sativa L. ssp. indica-type cytoplasm using cytoplasmic subspecies-specific molecular markers. This was confirmed by cytoplasmic genome-wide single nucleotide polymorphisms(SNPs) and functional gene sequencing. Two of these five japonica cultivars were core breeding parents with high yield and the other three were super-high-yield varieties registered by the Ministry of Agriculture of China. We constructed nuclear substitution lines to further demonstrate whether and how this indica-type cytoplasm contributed to yield improvement by comparing yield components. The results showed that under the same japonica nuclear background, the lines with indica-type cytoplasm had a significant decrease in tillers in exchange for increased grain number per panicle compared with their recurrent parents. Our results implied that botanical basis of this cytoplasmic effect was to reduce the plant's branching differentiation to produce more floral organs under the constant nutrition. Our findings open another door for the utilization of inter-subspecific hybridization for the improvement of rice cultivar.展开更多
基金supported by China National 863 Program(2001AA211191)100 Innovation Projects of Guangdong Province(2KB64804N)Natural Science Foundation of Guangdong Province(990501).
文摘The newly released super high-yielding hybrid rice combinations, Yueza 122, Fengyou 428, Peiza 67, and the super high-yielding conventional cultivars, Guangchao 3 and Shengtai 1, were grown in both early and late seasons. The morphological characters of each population were investigated at the heading stage, and the data were analyzed by using ANOVY and other statistic methods. The plant ideal morphological characters at the heading stage were established as follows: 1 ) for the early-season cropping, 90-105 cm plant height; 11-12 tillers per plant; 35-40 em length and 2.1-2.2 cm width of flag leaf; 46-50 cm length and 1.8-2.1 cm width of the second leaf from the top (L2); 59-64 cm length and 1.4-1.9 cm width of the third leaf from the top (L3); 7°-14°, 18° and 200-33° for the ideal leaf angles of the flag leaf, L2 and L3, respectively; 2) for the late-season cropping, 90-100 cm plant height; 9-15 tillers per plant; 30-41 cm length and 1.8-2.0 cm width of flag leaf; 53-61 cm length and 1.3-1.8 cm width of L2; 52-58 cm length and 1.2-1.5 cm width of L3; 9°-19°, 15°-37° and 16°-49° for the ideal leaf angles of the flag leaf, L2 and L3, respectively. The main physiological characteristics of these varieties were also analyzed.
基金Supported by Program for Ministry of Agriculture of the People’s Republic of China
文摘In a field experiment, rice cultivar Shanyou 63 was used as a check cultivar to investigate the changes in activity of peroxidase and contents of malondialdehyde and soluble protein after full heading stage in flag leaves of two super high-yielding inbred rice, including Shengtai 1 and Yuxiangyouzhan. The results showed that the peroxidase activities and soluble protein contents in the leaves of the three cultivars tended to increase gradually to peak values and thereafter descended during stage after full heading. Moreover, both the peroxidase activities and soluble protein contents of Shengtai 1 and Yuxiangyouzhan peaked at 8 days after full heading, which was compared with that of Shanyou 63 at 4 days later. Meanwhile, the malondialdehyde contents in the leaves of the three cultivars increased gradually after full heading stage. In addition, activities of peroxidase and contents of malondialdehyde and soluble protein in different cultivars were various at the same time. In general, for Shengtai 1 and Yuxiangyouzhan, the peroxidase activities and soluble protein contents were higher than those of Shanyou 63, whereas the malondialdehyde contents were lower compared with that of Shanyou 63. And these features could make the senescence of leaf become later and slower and photosynthetic product was more in Shengtai 1 and Yuxiangyouzhan than that in Shanyou 63.
基金supported by the Ministry of Agriculture of China(Grant No.2005-2009)
文摘The nitrogen uptake, yield and its components for two super-high-yielding hybrid rice combinations, Guodao 6 and Eryou 7954 were investigated under different plant densities (15, 18, and 21 plants/m^2) and different nitrogen application rates (120, 150, 180, and 210 kg/hm^2). The experiment was conducted on loam soil during 2004-2006 at the experimental farm of the China National Rice Research Institute in Hangzhou, China. In these years, the two hybrid rice cleady showed higher yield at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Guodao 6 produced an average grain yield of 10 215.6 kg/hm^2 across the three years, while the yield of Eryou 7954 was 9 633.0 kg/hm^2. With fewer plants per unit-area and larger plants in the plots, the two hybrid rice produced more panicles per plant in three years. The highest nitrogen uptake of the two hybrid rice was at a plant density of 15 plants/m^2 with a nitrogen application rate of 180 kg/hm^2. Further increasing nitrogen application rate was not advantageous for nitrogen uptake in super-high-yielding rice under the same plant density.
基金This work was supported by the State Key Basic Research Development Planthe Kuayue Plan of Chinese Agriculture Ministry
文摘The characteristics of dry matter production before and after heading and tne relationships between photosynthesis of flag leaves and dry matter accumulation in panicles were investigated on super high-yielding rice cv. Xieyou 9308 (the yield of up to 12 t/ha) with rice cv. Xieyou 63 as a control. The results showed that (i) the capacity of dry matter production before and after heading in Xieyou 9308, i.e. biomass and daily dry matter production, was remarkably higher than that in Xieyou 63, especially after heading; (ii) CO2 assimilation capacity in flag leaves in Xieyou 9308, namely Leaf Source Capacity (LSC), was also significantly higher than that in Xieyou 63, and the supply of photosynthate in leaves and the demand of grain filling were completely synchronous in Xieyou 9308, but photosynthetic function in flag leaves in Xieyou 63 declined sharply 20 days after heading and it was not enough to meet the demand of grain filling. These results confirmed that high efficient photosynthetic function in leaves after heading and its complete synchronization with grain filling are the key approaches to super high yield of rice.
基金China Special Fund for Meteorological Research in the Public Interest(201206045)
文摘Based on meteorological data including daily sunshine duration, temperature and precipitation from 97 meteorological stations in Hunan province during the period of 1981—2010, in combination with the field experiment in different places at different sowing dates, the precise climatic risk zoning of double cropping super rice cultivation has been studied by using the spatial interpolation method and other Geographical Information System(GIS)technologies. Three key climatic factors were selected including chilling in May, high temperature heat damage during July to early August and low temperature damage in autumn in this study. Furthermore, based on the analysis of climatic conditions suitable for double cropping super rice cultivation and climatic disasters, 8-22 ℃ active accumulated temperature, sunshine duration from late March to October, climatic risk index of the low temperature in autumn, and climatic risk index of chilling in May were selected as key climatic factors to study the precise agro-meteorological regionalization of double cropping super rice in Hunan province. The results showed that: the high-yielding zones of double cropping super rice in Hunan were mainly located in Zhuzhou, Hengyang, Yongzhou and Chenzhou City, the moderate-yielding zones were primarily located in the east and north reaches of Dongting Lake,together with most of Changsha, Zhuzhou and Xiangtan City, and other regions in Hunan were not suitable for double cropping super rice. These findings can provide valuable information for the large-scale cultivation of double cropping super rice in Hunan province.
基金Supported by National Key R&D Program of China(2017YFD0100405)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-201X-CNRRI)+3 种基金Independent Research Project of State Key Laboratory of Rice Biology(2017ZZKT10204)the Major Scientific Technological Project of New Varieties of Agriculture(Grain)of Zhejiang Province(2016C02050-5-1)the Fundamental Research Fund for China National Rice Research Institute(2017RG003-1)Breeding of High-yield Genetically Modified Rice Varieties(2016ZX08001004-001)
文摘Chunyou 284 is a medium- japonica hybrid combination,as well as an indica-japonica subspecific hyrbid with super-high yield,which was developed from Chunjiang 23A,a thermo-sensitive CMS line with very early anthesis time,and C84,an indica-japonica intermediate type restorer line with wide compatibility.This combination has the advantages of high yield potential,early maturity,excellent comprehensive agronomic traits and wide adaptability.It was approved by Jiangsu Provincial Crop Variety Approval Committee in June,2018.The breeding process,main characteristics,cultivation techniques and seed production points of the combination were introduced.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX2-SW-307)the Knowledge Innovation Program of the Institute of Botany,the Chinese Academy of Sciences
文摘Liangyoupeijiu is a super high-yield hybrid rice. Despite its advantages with respect to yield and grain quality, it is sensitive to cold, which keeps it from being widely cultivated. We subjected Liangyoupeijiu seedlings to 4 ℃ cold treatment, then extracted the leaf proteins. After 2-D gel electrophoresis separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, a series of differentially displayed proteins were identified. Some metabolism-associated proteins were found among the downregulated proteins, such as carbamoyl phosphate synthetase, transketolase 1, dihydrolipoamide dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase. The upregulated proteins included both stress-resistance proteins such as nucleoside diphosphate kinase I and proteins that are negative for rice growth, such as FtsH-like protein, plastid fusion and/or translocation factor (Pftf) and actin. Our results indicate that cold may inhibit Liangyoupeijiu growth through decreasing metabolic activity and damaging cell structure.
基金supported by the National Natural Science Foundation of China(31271659)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAD04B10 2011BAD16B01, 2013BAD07B14)
文摘This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 and 1995, respectively. Research on super hybrid rice, which was first launched by Ministry of Agriculture, China in 1996, is discussed, and the great progress of super hybrid rice had been achieved with a new yield record by 15.4 t ha^-1 in the 6.84 ha demonstration location in Xupu, Hunan Province, China in 2014. And the mechanism of heterosis, the techniques of hybrid seed production and the modern field managements in hybrid rice over the past decades are also discussed. Additionally, this article dealt with the intellectual property protection(IPR) and development of hybrid rice seed industry in China. Major factors that constrain hybrid rice development are analyzed and possible solutions to this problems are proposed. Finally, the authors present methods to further increase production yield, and propose an improvement for breeding super high-yielding hybrid rice based on these methods.
基金supported by the National Natural Science Foundation of China (31371587 and 31430062)the Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province (2014046)+1 种基金the China Postdoctoral Science Foundation Grant (2014M560221)the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), China
文摘Cytoplasmic effects are important agronomical phenomena that have generated widespread interest in both theory and application. In the present study, five high yield rice cultivars(Oryza sativa L. ssp. japonica) in large-scale cultivation in northeast China were determined to possess Oryza sativa L. ssp. indica-type cytoplasm using cytoplasmic subspecies-specific molecular markers. This was confirmed by cytoplasmic genome-wide single nucleotide polymorphisms(SNPs) and functional gene sequencing. Two of these five japonica cultivars were core breeding parents with high yield and the other three were super-high-yield varieties registered by the Ministry of Agriculture of China. We constructed nuclear substitution lines to further demonstrate whether and how this indica-type cytoplasm contributed to yield improvement by comparing yield components. The results showed that under the same japonica nuclear background, the lines with indica-type cytoplasm had a significant decrease in tillers in exchange for increased grain number per panicle compared with their recurrent parents. Our results implied that botanical basis of this cytoplasmic effect was to reduce the plant's branching differentiation to produce more floral organs under the constant nutrition. Our findings open another door for the utilization of inter-subspecific hybridization for the improvement of rice cultivar.