The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained...The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained emulsions, both before and after passing through highpressure homogenizer, were subjected to stability test under environmental stress conditions,that is, temperature cycling at 4 °C/40 °C for 6 cycles and centrifugal test at 3000 rpm for 10 min. Applying high-pressure homogenization after mechanical homogenization caused only a small additional decrease in emulsion droplet size. The droplet size of emulsions was influenced by the type of pectin used;emulsions using high methoxy pectin(HMP) were smaller than that using low methoxy pectin(LMP). This is due to a greater emulsifying property of HMP than LMP. The emulsions stabilized by HMP–zein showed good physical stability with lower percent creaming index than those using LMP, both before and after passing through high-pressure homogenizer. The stability of emulsions after passing through high-pressure homogenizer was slightly higher when using higher zein concentration, resulting from stronger pectin–zein complexes that could rearrange and adsorb onto the emulsion droplets.展开更多
The microstructure of bacterial cellulose nanofibers(BCNs)film affects its characteristic.One of several means to engineer the microstructure is by changing the BCNs size and fiber distribution through a high-pressure...The microstructure of bacterial cellulose nanofibers(BCNs)film affects its characteristic.One of several means to engineer the microstructure is by changing the BCNs size and fiber distribution through a high-pressure homogenizer(HPH)process.This research aimed to find out the effects of repetition cycles on HPH process towards BCNs film characteristics.To prepare BCNs films,a pellicle from the fermentation of pineapple peels waste with Acetobacter xylinum(A.xylinum)was extracted,followed by crushing the pellicle with a high-speed blender,thereafter,homogenized using HPH at 150 bar pressure with variations of 5,10,15,and 20 cycles.The BCNs films were then formed through the casting process and drying in the oven at 60°C for 8 h followed by structural,morphological,and optical properties investigation using X-ray diffraction(XRD),scanning electron microscopy(SEM)and Fourier transform infrared(FTIR)spectrometer along with BCNs films porosity,tensile and roughness test.The research showed that the effect of HPH cycle on BCNs resulted in the highest film tensile strength by 109.15 MPa with the lowest surface roughness(Ra)of 0.93±0.10μm at 10 cycles.The HPH process is effective in controlling BCNs film porosity level.The HPH cycles influence the crystalline index and crystallite size,slightly.展开更多
It has been shown that the recently discovered sulfur trihydride (H3S) can be considered as a superconductor with a transition temperature Tc of 203 Kelvin (K) at 155 GigaPascals (GPa). This is the highest Tc value re...It has been shown that the recently discovered sulfur trihydride (H3S) can be considered as a superconductor with a transition temperature Tc of 203 Kelvin (K) at 155 GigaPascals (GPa). This is the highest Tc value reported for any superconductor. The established superconductivity occurs via the formation of a molecular system with sulfur atoms arranged on a body-centered cubic lattice. It has been generally accepted that the high Tc value is the result of an efficient electron-phonon interaction. The responsible substance formed by H2S under high pressure, may be considered as a compound with H3S stoichiometry creating an impressive network with hydrogens. We will focus on the hydrogen bonding between sulfur and hydrogens demonstrating a symmetrical arrangement. The geometry of the individual radical compound in relation to corresponding systems will be discussed. Ab initio calculations based on a linear three-center two-, three- and four-electron type of bonding clearly visualized in combination with the dynamics of the Van’t Hoff concept, as described by us in various papers, give a good description of this exclusive network. We also discuss the superconductivity of related phosphorus hydrides and focus on the stability and geometrical differences with respect to the H3S system. These differences are significant, demonstrating the diversity in various structures in showing superconductivity.展开更多
High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disin...High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DDCOD), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DDCOD of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DDCOD= kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.展开更多
The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NF...The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NFC)were extracted from four biomass resources.The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions.The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli.As the concentration increased,the storage and loss modulus of NFC dispersion increased.When the shear rate increased to a certain value,there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived from different biomass resources and the suspensions with different solid concentrations.NFC dispersion’s storage and loss modulus increased when the temperature rose to nearly 80℃.We hope this study can deepen the understanding of the rheological properties of NFC colloids derived from different biomass resources.展开更多
基金financially supported by the Research and Development Institute, Silpakorn University
文摘The aim of this study was to investigate the effect of high-pressure homogenization on the droplet size and physical stability of different formulations of pectin–zein stabilized rice bran oil emulsions. The obtained emulsions, both before and after passing through highpressure homogenizer, were subjected to stability test under environmental stress conditions,that is, temperature cycling at 4 °C/40 °C for 6 cycles and centrifugal test at 3000 rpm for 10 min. Applying high-pressure homogenization after mechanical homogenization caused only a small additional decrease in emulsion droplet size. The droplet size of emulsions was influenced by the type of pectin used;emulsions using high methoxy pectin(HMP) were smaller than that using low methoxy pectin(LMP). This is due to a greater emulsifying property of HMP than LMP. The emulsions stabilized by HMP–zein showed good physical stability with lower percent creaming index than those using LMP, both before and after passing through high-pressure homogenizer. The stability of emulsions after passing through high-pressure homogenizer was slightly higher when using higher zein concentration, resulting from stronger pectin–zein complexes that could rearrange and adsorb onto the emulsion droplets.
基金support by the Universitas Negeri Malang for the PNBP research grant for PUI CAMRY with Contract No.4.3.714/UN32.14.1/LT/2020.
文摘The microstructure of bacterial cellulose nanofibers(BCNs)film affects its characteristic.One of several means to engineer the microstructure is by changing the BCNs size and fiber distribution through a high-pressure homogenizer(HPH)process.This research aimed to find out the effects of repetition cycles on HPH process towards BCNs film characteristics.To prepare BCNs films,a pellicle from the fermentation of pineapple peels waste with Acetobacter xylinum(A.xylinum)was extracted,followed by crushing the pellicle with a high-speed blender,thereafter,homogenized using HPH at 150 bar pressure with variations of 5,10,15,and 20 cycles.The BCNs films were then formed through the casting process and drying in the oven at 60°C for 8 h followed by structural,morphological,and optical properties investigation using X-ray diffraction(XRD),scanning electron microscopy(SEM)and Fourier transform infrared(FTIR)spectrometer along with BCNs films porosity,tensile and roughness test.The research showed that the effect of HPH cycle on BCNs resulted in the highest film tensile strength by 109.15 MPa with the lowest surface roughness(Ra)of 0.93±0.10μm at 10 cycles.The HPH process is effective in controlling BCNs film porosity level.The HPH cycles influence the crystalline index and crystallite size,slightly.
文摘It has been shown that the recently discovered sulfur trihydride (H3S) can be considered as a superconductor with a transition temperature Tc of 203 Kelvin (K) at 155 GigaPascals (GPa). This is the highest Tc value reported for any superconductor. The established superconductivity occurs via the formation of a molecular system with sulfur atoms arranged on a body-centered cubic lattice. It has been generally accepted that the high Tc value is the result of an efficient electron-phonon interaction. The responsible substance formed by H2S under high pressure, may be considered as a compound with H3S stoichiometry creating an impressive network with hydrogens. We will focus on the hydrogen bonding between sulfur and hydrogens demonstrating a symmetrical arrangement. The geometry of the individual radical compound in relation to corresponding systems will be discussed. Ab initio calculations based on a linear three-center two-, three- and four-electron type of bonding clearly visualized in combination with the dynamics of the Van’t Hoff concept, as described by us in various papers, give a good description of this exclusive network. We also discuss the superconductivity of related phosphorus hydrides and focus on the stability and geometrical differences with respect to the H3S system. These differences are significant, demonstrating the diversity in various structures in showing superconductivity.
基金supported by the China-Israel Joint Research Program, MOST of Chinathe National Natural Science Foundation of China (No. 51178047)the Foundation of Key Laboratory for Solid Waste Management and Environment Safety,Ministry of Education of China (No. SWMES 2010-2)
文摘High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DDCOD), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DDCOD of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DDCOD= kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.
基金supported in part by the Fundamental Research Funds for the Central Universities(2572019BB03 and 2572021CG01)the Startup Fund and the Catalyst Fund from Rowan University and the Research Grant(PC 20-22)from the New Jersey Health Foundation from USAthe Grant(DMR-2116353)from the National Science Foundation.
文摘The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NFC)were extracted from four biomass resources.The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions.The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli.As the concentration increased,the storage and loss modulus of NFC dispersion increased.When the shear rate increased to a certain value,there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived from different biomass resources and the suspensions with different solid concentrations.NFC dispersion’s storage and loss modulus increased when the temperature rose to nearly 80℃.We hope this study can deepen the understanding of the rheological properties of NFC colloids derived from different biomass resources.