The authors report a super low power Medical Implant Communication Service (MICS) band receiver for a high resolution epi-retinal prosthesis (BionicEye). The frequency shift keying (FSK) receiver consumes less t...The authors report a super low power Medical Implant Communication Service (MICS) band receiver for a high resolution epi-retinal prosthesis (BionicEye). The frequency shift keying (FSK) receiver consumes less than 1.5 mW power with 1 V supply. It is able to achieve a maximum data rate of 400 kb/s. This paper presents the research work carried out on designing a fully-integrated sub-threshold receiver fabricated on a 65 nm complimentary metal oxide semiconductor (CMOS) chip. In order to achieve super low power consumption, more than 90% of the transistors in all analog building blocks are operated in sub-threshold region. System level issues, such as required receiver architecture and specifications are also addressed.展开更多
This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus...This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus of camera and the image element of charge coupled device (CCD), it is an innovative and economical way to improve the camera’s resolution to enforce the satel ite to fly on the lower altitude orbit. DFH-3, the mature satel ite bus de-veloped by Chinese Academy of Space Technology, is employed to define the mass and power budgets for the computational mis-sion analysis and the detailed engineering design for super low altitude satel ites. An effective iterative algorithm is proposed to solve the ergodic representation of feasible mass and power bud-gets at the flight altitude under constraints. Besides, boundaries of mass or power exist for every altitude, where the upper boundary is derived from the maximum power, while the minimum thrust force holds the lower boundary before the power reaching the initial value. What’s more, an analytical algorithm is employed to numerical y investigate the coverage percentage over the altitude, so that the nominal altitude could be selected from al the feasi-ble altitudes based on both the mass and power budgets and the repetitive ground traces. The local time at the descending node is chosen for the nominal sun-synchronous orbit based on the average evaluation function. After determining the key orbital ele-ments based on the computational mission analysis, the detailed engineering design on the configuration and other subsystems, like power, telemetry telecontrol and communication (TT&C), and attitude determination and control system (ADCS), is performed based on the benchmark bus, besides, some improvements to the bus are also implemented to accommodate the flight at a super low altitude. Two operation strategies, drag-free closed-loop mode and on/off open-loop mode, are presented to maintain the satel-lite’s altitude. Final y, a flight planning schedule for the satel ite is demonstrated from its launch into the initial altitude at the very beginning to its decay to death in the end.展开更多
Power semiconductor devices are the key technology driver for all power electronic system engineering.The main development trend for power devices is going towards higher power handling capability at even smaller Sivo...Power semiconductor devices are the key technology driver for all power electronic system engineering.The main development trend for power devices is going towards higher power handling capability at even smaller Sivolume, faster switching performance,advanced ruggedness and reliability at elevated operating temperature and extended SOA diagrams.To cover all applications in the various fields of industry,consumer,computing and automotive the device optimization is different for low voltage power MOSFET,for high voltage MOSFET,for plasma modulated devices and components based on wide bandgap(WB) material.In the paper,the main development trends will be described and discussed.展开更多
为实现模拟前端电路的低功耗增益控制,提出了一种基于控制信号频宽比的可变增益放大器VGA(Variable GainAmplifier),该电路以超再生为基础,能够对增益实施精细控制。与传统的大多数可变增益放大器不同的是,提出的VGA电路在数字控制和放...为实现模拟前端电路的低功耗增益控制,提出了一种基于控制信号频宽比的可变增益放大器VGA(Variable GainAmplifier),该电路以超再生为基础,能够对增益实施精细控制。与传统的大多数可变增益放大器不同的是,提出的VGA电路在数字控制和放大器之间的接口并没有使用任何的直流/交流转换器。最终实现的VGA集成电路使用了0.18 mm CMOS技术进行设计,旨在实现低功率消耗。仿真和测试结果均表明,本文提出的放大器在900 m V的线性范围内最大增益为45 d B,总谐波失真为0.5%,功耗为6.4,相比传统的可变增益放大器,表现出更大的增益范围和较低的功耗。展开更多
文摘The authors report a super low power Medical Implant Communication Service (MICS) band receiver for a high resolution epi-retinal prosthesis (BionicEye). The frequency shift keying (FSK) receiver consumes less than 1.5 mW power with 1 V supply. It is able to achieve a maximum data rate of 400 kb/s. This paper presents the research work carried out on designing a fully-integrated sub-threshold receiver fabricated on a 65 nm complimentary metal oxide semiconductor (CMOS) chip. In order to achieve super low power consumption, more than 90% of the transistors in all analog building blocks are operated in sub-threshold region. System level issues, such as required receiver architecture and specifications are also addressed.
基金supported by the National Natural Science Foundation of China(11172020)the Fundamental Research Funds for the Central Universities+1 种基金the Aerospace Science and Technology Innovation Foundation of China Aerospace Science Corporationthe Innovation Fund of China Academy of Space Technology
文摘This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus of camera and the image element of charge coupled device (CCD), it is an innovative and economical way to improve the camera’s resolution to enforce the satel ite to fly on the lower altitude orbit. DFH-3, the mature satel ite bus de-veloped by Chinese Academy of Space Technology, is employed to define the mass and power budgets for the computational mis-sion analysis and the detailed engineering design for super low altitude satel ites. An effective iterative algorithm is proposed to solve the ergodic representation of feasible mass and power bud-gets at the flight altitude under constraints. Besides, boundaries of mass or power exist for every altitude, where the upper boundary is derived from the maximum power, while the minimum thrust force holds the lower boundary before the power reaching the initial value. What’s more, an analytical algorithm is employed to numerical y investigate the coverage percentage over the altitude, so that the nominal altitude could be selected from al the feasi-ble altitudes based on both the mass and power budgets and the repetitive ground traces. The local time at the descending node is chosen for the nominal sun-synchronous orbit based on the average evaluation function. After determining the key orbital ele-ments based on the computational mission analysis, the detailed engineering design on the configuration and other subsystems, like power, telemetry telecontrol and communication (TT&C), and attitude determination and control system (ADCS), is performed based on the benchmark bus, besides, some improvements to the bus are also implemented to accommodate the flight at a super low altitude. Two operation strategies, drag-free closed-loop mode and on/off open-loop mode, are presented to maintain the satel-lite’s altitude. Final y, a flight planning schedule for the satel ite is demonstrated from its launch into the initial altitude at the very beginning to its decay to death in the end.
文摘Power semiconductor devices are the key technology driver for all power electronic system engineering.The main development trend for power devices is going towards higher power handling capability at even smaller Sivolume, faster switching performance,advanced ruggedness and reliability at elevated operating temperature and extended SOA diagrams.To cover all applications in the various fields of industry,consumer,computing and automotive the device optimization is different for low voltage power MOSFET,for high voltage MOSFET,for plasma modulated devices and components based on wide bandgap(WB) material.In the paper,the main development trends will be described and discussed.
文摘为实现模拟前端电路的低功耗增益控制,提出了一种基于控制信号频宽比的可变增益放大器VGA(Variable GainAmplifier),该电路以超再生为基础,能够对增益实施精细控制。与传统的大多数可变增益放大器不同的是,提出的VGA电路在数字控制和放大器之间的接口并没有使用任何的直流/交流转换器。最终实现的VGA集成电路使用了0.18 mm CMOS技术进行设计,旨在实现低功率消耗。仿真和测试结果均表明,本文提出的放大器在900 m V的线性范围内最大增益为45 d B,总谐波失真为0.5%,功耗为6.4,相比传统的可变增益放大器,表现出更大的增益范围和较低的功耗。