Future changes of heating degree days (HDD) and cooling degree days (CDD) in the 21st century with and without considering populationfactor are investigated based on four sets of climate change simulations over Ea...Future changes of heating degree days (HDD) and cooling degree days (CDD) in the 21st century with and without considering populationfactor are investigated based on four sets of climate change simulations over East Asia using the regional climate model version 4.4 (RegCM4.4)driven by the global models of CSIRO-Mk3-6-0, EC-EARTH, HadGEM2-ES, and MPI-ESM-MR. Under global warming of 1.5℃, 2℃, 3℃,and 4℃, significant decrease of HDD can be found over China without considering population factor, with greater decrease over high elevationand high latitude regions, including the Tibetan Plateau, the northern part of Northeast China, and Northwest China; while population-weightedHDD increased in areas where population will increase in the future, such as Beijing, Tianjin, parts of southern Hebei, northern Shandong andHenan provinces. Similarly, the CDD projections with and without considering population factor are largely different. Specifically, withoutconsidering population, increase of CDD were observed over most parts of China except the Tibetan Plateau where the CDD remained zerobecause of the cold climate even under global warming; while considering population factor, the future CDD decreases in South China andincreases in North China, the Sichuan Basin, and the southeastern coastal areas, which is directly related to the population changes. The differentfuture changes of HDD and CDD when considering and disregarding the effects of population show that population distribution plays animportant role in energy consumption, which should be considered in future research.展开更多
Based on data of daily air temperature during 1951-2013,long-term variation characteristics of cooling degree days( CDD) in Xi'an and Chang'an in summer were analyzed by using CDD to evaluate cooling energy consum...Based on data of daily air temperature during 1951-2013,long-term variation characteristics of cooling degree days( CDD) in Xi'an and Chang'an in summer were analyzed by using CDD to evaluate cooling energy consumption and 26 ℃ as the basic temperature of CDD. The results indicated that the changing trends of CDD in Xi'an and Chang'an were basically identical within a year,and the demand for cooling refrigeration was large mainly from June to August,especially in July. The maximum of urban-rural difference of CDD between Xi'an and Chang'an appeared in June.In order to achieve the same temperature,energy needed by the urban area was 5-7 ℃·d more than the suburb from June to August. Temperature and the cooling energy consumption were closely related,and the correlation degree increased with the rise of temperature. The effects of temperature increase of 1 ℃ on cooling energy consumption rate in Xi'an were more obvious than that in Chang'an. In both Xi'an and Chang'an,the effects of temperature increase of 1 ℃ on cooling energy consumption rate in July and August were greater than that in May,June and September.Evaluation models of cooling energy consumption in summer in Xi'an and Chang'an were built using temperature anomaly and CDD variability and can be applied to business systems.展开更多
Energy analysis plays an important role in developing an optimum and cost effective design of HVAC (heating, ventilating and air conditioning) system for an architecture. Although there are different energy analysis...Energy analysis plays an important role in developing an optimum and cost effective design of HVAC (heating, ventilating and air conditioning) system for an architecture. Although there are different energy analysis methods, which vary in complexity, the degree-day methods are the simplest methods and well-established tools. Energy consumption increases as the number of heating and cooling degree days increases and falls as the number of heating and cooling degree days falls. The value of degree days is a measure which can be used to indicate the demand for energy to heat or cool buildings and spaces. The monthly or annual cooling and heating requirements of specific buildings in different locations can be estimated by means of the degree-day concept. The base temperature is the outdoor temperature below or above which heating or cooling is needed. In this study, the degree days for the period of 2008-2012 were calculated for Turkey (10 cities) and also to develop new software for easy analysis about cooling degree days. This paper can be helpful for designing facade and also contribute to degree-day analyses.展开更多
It has been reported that global warming has negative effects on coral ecosystems in the past 50 years and the effects vary in different ocean environment. In order to make clear the coral reef status in the backgroun...It has been reported that global warming has negative effects on coral ecosystems in the past 50 years and the effects vary in different ocean environment. In order to make clear the coral reef status in the background of global warming along the south coast of Hainan Island of China, satellite and in situ data are used to retrieve the information of the coral reef status and surrounding environmental factors. The results show that cool water induced by upwelling along the south coast of Hainan Island is found in the area every summer month, especially in the relatively strong El Ni?o years(2002–2003 and 2005). From the NOAA satellite data, degree heating week(DHW) index does not exceed 3 in Sanya Bay even in the relatively strong El Ni?o years. By comparison of a coral reef growth rate in the Sanya Bay with respect to El Ni?o events from 1957 to 2000, coral's growth rate is relatively greater during 1972, 1991–1994 and 1998 El Ni?o event. By analyzing the environmental factors, it is found that the cool water induced by upwelling may be the main reason for protecting corals from global warming effects.展开更多
制冷度日数(Cooling degree days,CDDs)可指示空间制冷能耗与室外热环境,但在全球栅格尺度上同时考虑气温、相对湿度与人口的CDDs分析鲜见报道。据此,本文利用气象、人口、遥感等数据,曼−肯德尔法、相对重要性分析、机器学习等方法在全...制冷度日数(Cooling degree days,CDDs)可指示空间制冷能耗与室外热环境,但在全球栅格尺度上同时考虑气温、相对湿度与人口的CDDs分析鲜见报道。据此,本文利用气象、人口、遥感等数据,曼−肯德尔法、相对重要性分析、机器学习等方法在全球0.25°栅格尺度上开展气温−相对湿度−人口驱动型CDDs时空变化、影响因素与模拟研究。结果表明,①全球基于湿球温度计算的CDDs(CDDs_(wb),CDDs based on wet bulb temperature)在30°N~30°S间除北非与西亚外的不少地区均高于567(℃·d),极高值[1469~2677(℃·d)]主要分布在亚马孙平原、东南亚中南半岛南侧及其以南地区。基于湿球温度与人口计算的CDDs(CDDs based on wet bulb temperature and population,CDDs_(wb_pop))大多低于17×10^(6)(℃·d·人),高值[277×10^(6)~2144×10^(6)(℃·d·人)]主要在恒河平原与印度南端、尼日利亚沿海、越南南北平原与爪哇岛。②1970—2018年CDDs_(wb)与2000—2018年CDDs_(wb_pop)在中高纬度呈现极高年际间变异,全球未来变化趋势多与过去保持强一致性。CDDs_(wb)显著增加(P<0.05)地区主要分布在北非与西亚、澳大利亚、里海东部、印尼西部的一些地区,显著降低区域主要分布在拉美、撒哈拉以南非洲、中国胡焕庸线以南及中南半岛的一些地区。CDDs_(wb_pop)在一些地区显著增加,速率基本小于8×10^(6)(℃·d·人)/a,集中发布在北非、西亚与里海东部的一些地区。③纬度与高程均分别与CDDs_(wb)及其变异系数呈现显著负向与正向偏相关关系(P<0.05);在不同大洲内,年降水量、夏季反照率、增强型植被指数与PM_(2.5)对CDDs_(wb)影响不同,夜间灯光影响不大。CDDs_(wb)实际值与模拟值间R2大多高于0.935,平均绝对误差百分比多小于6.77%,均方根误差在15.63~184.51(℃·d)。展开更多
利用STL(Seasonal-Trend decomposition using Loess,时间序列分解算法)模型对工业园区运行阶段的建筑碳排放进行预测分析,介绍电碳模型构建技术路线、模型构建的STL和线性回归,给出某高新园区2021年到2022年碳排放量的预测结果。可为...利用STL(Seasonal-Trend decomposition using Loess,时间序列分解算法)模型对工业园区运行阶段的建筑碳排放进行预测分析,介绍电碳模型构建技术路线、模型构建的STL和线性回归,给出某高新园区2021年到2022年碳排放量的预测结果。可为园区规划双碳路径、制定减排计划、开展节能减排手段提供数据支撑,辅助园区实现绿色低碳发展目标。展开更多
文摘Future changes of heating degree days (HDD) and cooling degree days (CDD) in the 21st century with and without considering populationfactor are investigated based on four sets of climate change simulations over East Asia using the regional climate model version 4.4 (RegCM4.4)driven by the global models of CSIRO-Mk3-6-0, EC-EARTH, HadGEM2-ES, and MPI-ESM-MR. Under global warming of 1.5℃, 2℃, 3℃,and 4℃, significant decrease of HDD can be found over China without considering population factor, with greater decrease over high elevationand high latitude regions, including the Tibetan Plateau, the northern part of Northeast China, and Northwest China; while population-weightedHDD increased in areas where population will increase in the future, such as Beijing, Tianjin, parts of southern Hebei, northern Shandong andHenan provinces. Similarly, the CDD projections with and without considering population factor are largely different. Specifically, withoutconsidering population, increase of CDD were observed over most parts of China except the Tibetan Plateau where the CDD remained zerobecause of the cold climate even under global warming; while considering population factor, the future CDD decreases in South China andincreases in North China, the Sichuan Basin, and the southeastern coastal areas, which is directly related to the population changes. The differentfuture changes of HDD and CDD when considering and disregarding the effects of population show that population distribution plays animportant role in energy consumption, which should be considered in future research.
基金Supported by Foundation for Young Scholars of Shaanxi Meteorological Bureau in 2016 and 2017(2016Y-7,2017Y-11)
文摘Based on data of daily air temperature during 1951-2013,long-term variation characteristics of cooling degree days( CDD) in Xi'an and Chang'an in summer were analyzed by using CDD to evaluate cooling energy consumption and 26 ℃ as the basic temperature of CDD. The results indicated that the changing trends of CDD in Xi'an and Chang'an were basically identical within a year,and the demand for cooling refrigeration was large mainly from June to August,especially in July. The maximum of urban-rural difference of CDD between Xi'an and Chang'an appeared in June.In order to achieve the same temperature,energy needed by the urban area was 5-7 ℃·d more than the suburb from June to August. Temperature and the cooling energy consumption were closely related,and the correlation degree increased with the rise of temperature. The effects of temperature increase of 1 ℃ on cooling energy consumption rate in Xi'an were more obvious than that in Chang'an. In both Xi'an and Chang'an,the effects of temperature increase of 1 ℃ on cooling energy consumption rate in July and August were greater than that in May,June and September.Evaluation models of cooling energy consumption in summer in Xi'an and Chang'an were built using temperature anomaly and CDD variability and can be applied to business systems.
文摘Energy analysis plays an important role in developing an optimum and cost effective design of HVAC (heating, ventilating and air conditioning) system for an architecture. Although there are different energy analysis methods, which vary in complexity, the degree-day methods are the simplest methods and well-established tools. Energy consumption increases as the number of heating and cooling degree days increases and falls as the number of heating and cooling degree days falls. The value of degree days is a measure which can be used to indicate the demand for energy to heat or cool buildings and spaces. The monthly or annual cooling and heating requirements of specific buildings in different locations can be estimated by means of the degree-day concept. The base temperature is the outdoor temperature below or above which heating or cooling is needed. In this study, the degree days for the period of 2008-2012 were calculated for Turkey (10 cities) and also to develop new software for easy analysis about cooling degree days. This paper can be helpful for designing facade and also contribute to degree-day analyses.
基金The National Natural Science Foundation of China under contract No.U1405234the National Basic Research Program(973 Program)of China under contract Nos 2013CB956503 and 2016YFC0302503+1 种基金the Sciences and Technologies Foundation of Guangdong Province of China under contract No.2016A050502038the Sciences and Technologies Foundation of Guangzhou,Guangdong of China under contract No.201508020071
文摘It has been reported that global warming has negative effects on coral ecosystems in the past 50 years and the effects vary in different ocean environment. In order to make clear the coral reef status in the background of global warming along the south coast of Hainan Island of China, satellite and in situ data are used to retrieve the information of the coral reef status and surrounding environmental factors. The results show that cool water induced by upwelling along the south coast of Hainan Island is found in the area every summer month, especially in the relatively strong El Ni?o years(2002–2003 and 2005). From the NOAA satellite data, degree heating week(DHW) index does not exceed 3 in Sanya Bay even in the relatively strong El Ni?o years. By comparison of a coral reef growth rate in the Sanya Bay with respect to El Ni?o events from 1957 to 2000, coral's growth rate is relatively greater during 1972, 1991–1994 and 1998 El Ni?o event. By analyzing the environmental factors, it is found that the cool water induced by upwelling may be the main reason for protecting corals from global warming effects.
文摘制冷度日数(Cooling degree days,CDDs)可指示空间制冷能耗与室外热环境,但在全球栅格尺度上同时考虑气温、相对湿度与人口的CDDs分析鲜见报道。据此,本文利用气象、人口、遥感等数据,曼−肯德尔法、相对重要性分析、机器学习等方法在全球0.25°栅格尺度上开展气温−相对湿度−人口驱动型CDDs时空变化、影响因素与模拟研究。结果表明,①全球基于湿球温度计算的CDDs(CDDs_(wb),CDDs based on wet bulb temperature)在30°N~30°S间除北非与西亚外的不少地区均高于567(℃·d),极高值[1469~2677(℃·d)]主要分布在亚马孙平原、东南亚中南半岛南侧及其以南地区。基于湿球温度与人口计算的CDDs(CDDs based on wet bulb temperature and population,CDDs_(wb_pop))大多低于17×10^(6)(℃·d·人),高值[277×10^(6)~2144×10^(6)(℃·d·人)]主要在恒河平原与印度南端、尼日利亚沿海、越南南北平原与爪哇岛。②1970—2018年CDDs_(wb)与2000—2018年CDDs_(wb_pop)在中高纬度呈现极高年际间变异,全球未来变化趋势多与过去保持强一致性。CDDs_(wb)显著增加(P<0.05)地区主要分布在北非与西亚、澳大利亚、里海东部、印尼西部的一些地区,显著降低区域主要分布在拉美、撒哈拉以南非洲、中国胡焕庸线以南及中南半岛的一些地区。CDDs_(wb_pop)在一些地区显著增加,速率基本小于8×10^(6)(℃·d·人)/a,集中发布在北非、西亚与里海东部的一些地区。③纬度与高程均分别与CDDs_(wb)及其变异系数呈现显著负向与正向偏相关关系(P<0.05);在不同大洲内,年降水量、夏季反照率、增强型植被指数与PM_(2.5)对CDDs_(wb)影响不同,夜间灯光影响不大。CDDs_(wb)实际值与模拟值间R2大多高于0.935,平均绝对误差百分比多小于6.77%,均方根误差在15.63~184.51(℃·d)。
文摘利用STL(Seasonal-Trend decomposition using Loess,时间序列分解算法)模型对工业园区运行阶段的建筑碳排放进行预测分析,介绍电碳模型构建技术路线、模型构建的STL和线性回归,给出某高新园区2021年到2022年碳排放量的预测结果。可为园区规划双碳路径、制定减排计划、开展节能减排手段提供数据支撑,辅助园区实现绿色低碳发展目标。