The paramagnetic Meissner effect (PME) was observed on the field-cooled M-T curves of melt-textured Y0.99Nd0.01Ba2Cu3O7-y in applied magnetic fields from 1kOe to 40kOe. In the magnetic field below 1kOe, the sample und...The paramagnetic Meissner effect (PME) was observed on the field-cooled M-T curves of melt-textured Y0.99Nd0.01Ba2Cu3O7-y in applied magnetic fields from 1kOe to 40kOe. In the magnetic field below 1kOe, the sample undergoes the typical transition from the normal state to the superconducting state when it was cooled down. The applied magnetic fields in which the PME occurs, are very high compared with the fields reported in literatures. We propose that the occurrence of the PME may be due to a phase transition of flux vortices in the superconductors.展开更多
Research on solvent effects is an important and long-standing topic,but there still is some room,especially for the special solvent effect of fluoroalcohols.In this work,we investigated the stability of phenoxyl radic...Research on solvent effects is an important and long-standing topic,but there still is some room,especially for the special solvent effect of fluoroalcohols.In this work,we investigated the stability of phenoxyl radical in monohydric alcohol solvents through in-situ electron paramagnetic resonance detections.The decay behavior of phenoxyl radical showed a reasonable relationship with the mesoscopic structure of alcohols,characterized by smalland wide-angle X-ray scattering.Moreover,the distinct solvent effects of fluoroalcohols were emphasized,and the significant influence of van der Waals distance in the solvents was suggested.Overall,the stability of phenoxyl radical in alcohols was quantified and correlated with the solvent structures.We believe that the established method for stability study on radicals will encourage solvent effect studies on various organic reactions,and the proposed solvent effects in fluoroalcohols may inspire the development of green solvents in both industrial conversions and organic synthesis.展开更多
The magnetic and electrical transport properties of the colossal magnetoresistance material La_(2/3)Ca_(1/3)MnO_3 were studied. It is found that the insulator-metal transition is well consistent with the paramagnetic-...The magnetic and electrical transport properties of the colossal magnetoresistance material La_(2/3)Ca_(1/3)MnO_3 were studied. It is found that the insulator-metal transition is well consistent with the paramagnetic-ferromagnetic transition,and shifts to higher temperature with increasing applied magnetic field. These results suggest that the transport properties are triggered by the magnetic structure transition and consequently result in a CMR near T _C.展开更多
Recently, 12442 system of Fe-based superconductors has attracted considerable attention owing to its unique double-Fe As-layer structure. A steep increase in the in-plane upper critical field with cooling has been obs...Recently, 12442 system of Fe-based superconductors has attracted considerable attention owing to its unique double-Fe As-layer structure. A steep increase in the in-plane upper critical field with cooling has been observed near the superconducting transition temperature, Tc, in KCa2Fe4As4F2 single crystals. Herein, we report a high-field investigation on upper critical field of this material over a wide temperature range, and both out-of-plane(H∥c, Hc2c) and in-plane(H∥ab, Hc2ab ) directions have been measured.A sublinear temperature-dependent behavior is observed for the out-of-plane Hc2c , whereas strong convex curvature with cooling is observed for the in-plane Hc2ab . Such behaviors could not be described by the conventional Werthamer-Helfand-Hohenberg(WHH) model. The data analysis based on the WHH model by considering the spin aspects reveals a large Maki parameter α=9,indicating that the in-plane upper critical field is affected by a very strong Pauli paramagnetic effect.展开更多
Theoretical and experimental results show that the state of minimum Ginsburg Landau free energy of small superconducting particles contains no flux line if the applied field is smaller than its critical field. For suc...Theoretical and experimental results show that the state of minimum Ginsburg Landau free energy of small superconducting particles contains no flux line if the applied field is smaller than its critical field. For such micron sized particles, after being cooled in a small magnetic field (e.g. less than 100 μT), the moment remaining during subsequent zero field warming contains almost no contribution from trapped flux and is dominated entirely by the paramagnetic Meissner effect (PME) of the particles. A systematic study of such a moment has been carried out to reveal its characteristic behavior of temperature, magnetic field and cooling or warming rate dependence. Methods for removing and recovering the PME of small superconducting particles are also reported.展开更多
A range of powdered Bi:2 212 samples exhibiting the paramagnetic Meissner effect (PME) are systematically examined. Interpretation of the results is made in terms of a phenomenological model in which there is a concen...A range of powdered Bi:2 212 samples exhibiting the paramagnetic Meissner effect (PME) are systematically examined. Interpretation of the results is made in terms of a phenomenological model in which there is a concentration within the material of small local moments that can be polarized during a field cooling. Information about the magnitudes of these local m0oments and their distribution are deduced. Relations between the local moments and the particle sizes, the weak link, oxygen content and the interactions between the local moments are also discussed. Comparison of the results from small particles and bulk samples shows that conclusions obtained from small particle experiments are reliable and universal.展开更多
基金the National R&D Center on Superconductivity of China and was carried out within the scientific exchange program between China and the Netherlands.
文摘The paramagnetic Meissner effect (PME) was observed on the field-cooled M-T curves of melt-textured Y0.99Nd0.01Ba2Cu3O7-y in applied magnetic fields from 1kOe to 40kOe. In the magnetic field below 1kOe, the sample undergoes the typical transition from the normal state to the superconducting state when it was cooled down. The applied magnetic fields in which the PME occurs, are very high compared with the fields reported in literatures. We propose that the occurrence of the PME may be due to a phase transition of flux vortices in the superconductors.
基金supported by the National Natural Science Foundation of China(grant numbers 22103068 and 22303079)Zhejiang Provincial Natural Science Foundation of China(grant number LGC22B050010)the National Key R&D Program of China(grant number 2022YFA1503200)
文摘Research on solvent effects is an important and long-standing topic,but there still is some room,especially for the special solvent effect of fluoroalcohols.In this work,we investigated the stability of phenoxyl radical in monohydric alcohol solvents through in-situ electron paramagnetic resonance detections.The decay behavior of phenoxyl radical showed a reasonable relationship with the mesoscopic structure of alcohols,characterized by smalland wide-angle X-ray scattering.Moreover,the distinct solvent effects of fluoroalcohols were emphasized,and the significant influence of van der Waals distance in the solvents was suggested.Overall,the stability of phenoxyl radical in alcohols was quantified and correlated with the solvent structures.We believe that the established method for stability study on radicals will encourage solvent effect studies on various organic reactions,and the proposed solvent effects in fluoroalcohols may inspire the development of green solvents in both industrial conversions and organic synthesis.
文摘The magnetic and electrical transport properties of the colossal magnetoresistance material La_(2/3)Ca_(1/3)MnO_3 were studied. It is found that the insulator-metal transition is well consistent with the paramagnetic-ferromagnetic transition,and shifts to higher temperature with increasing applied magnetic field. These results suggest that the transport properties are triggered by the magnetic structure transition and consequently result in a CMR near T _C.
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015187)the National Natural Science Foundation of China(Grant Nos.11204338,11704385,and11874359)the “Strategic Priority Research Program(B)” of the Chinese Academy of Sciences(Grant No.XDB04040300)
文摘Recently, 12442 system of Fe-based superconductors has attracted considerable attention owing to its unique double-Fe As-layer structure. A steep increase in the in-plane upper critical field with cooling has been observed near the superconducting transition temperature, Tc, in KCa2Fe4As4F2 single crystals. Herein, we report a high-field investigation on upper critical field of this material over a wide temperature range, and both out-of-plane(H∥c, Hc2c) and in-plane(H∥ab, Hc2ab ) directions have been measured.A sublinear temperature-dependent behavior is observed for the out-of-plane Hc2c , whereas strong convex curvature with cooling is observed for the in-plane Hc2ab . Such behaviors could not be described by the conventional Werthamer-Helfand-Hohenberg(WHH) model. The data analysis based on the WHH model by considering the spin aspects reveals a large Maki parameter α=9,indicating that the in-plane upper critical field is affected by a very strong Pauli paramagnetic effect.
文摘Theoretical and experimental results show that the state of minimum Ginsburg Landau free energy of small superconducting particles contains no flux line if the applied field is smaller than its critical field. For such micron sized particles, after being cooled in a small magnetic field (e.g. less than 100 μT), the moment remaining during subsequent zero field warming contains almost no contribution from trapped flux and is dominated entirely by the paramagnetic Meissner effect (PME) of the particles. A systematic study of such a moment has been carried out to reveal its characteristic behavior of temperature, magnetic field and cooling or warming rate dependence. Methods for removing and recovering the PME of small superconducting particles are also reported.
文摘A range of powdered Bi:2 212 samples exhibiting the paramagnetic Meissner effect (PME) are systematically examined. Interpretation of the results is made in terms of a phenomenological model in which there is a concentration within the material of small local moments that can be polarized during a field cooling. Information about the magnitudes of these local m0oments and their distribution are deduced. Relations between the local moments and the particle sizes, the weak link, oxygen content and the interactions between the local moments are also discussed. Comparison of the results from small particles and bulk samples shows that conclusions obtained from small particle experiments are reliable and universal.