Since the “smart growth” was put forward in the late 90s, it has become an accepted design idea and concept in the field of urban design in the world, and has been deeply studied and applied. In order to better prom...Since the “smart growth” was put forward in the late 90s, it has become an accepted design idea and concept in the field of urban design in the world, and has been deeply studied and applied. In order to better promote “smart grown”, we set up an evaluation system, which consists of eleven indicators. In this paper, Oxford City and Fengzhen City are used as the objects of the study. Then smart growth evaluation model is established. The weight of the index is calculated by the entropy method. We use the model to evaluate the development plans of the two cities, from which to calculate the contribution of the indicators on the level of smart growth. Finally, we use the super-efficient data envelopment analysis model (DEA) to rank the importance of the indicators to the smart growth. The results show that the level of smart growth in Oxford is higher than that in Fengzhen. And “Multifunctional Building Density in Central City”, “The Density of Public Area in Central City” two indicators account for more than 36% weight. The contribution of the two indicators is also located in the top two indicators. Two cities focus on the direction of smart growth is also different. In summary, the differences between China and Western countries in urban planning are mainly focused on housing and public resources.展开更多
With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the lit...With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the literature revealed that most studies tend to use several performance criteria to evaluate the performance of competing forecasting models;however, models are compared to each other using a single criterion at a time, which often leads to different rankings for different criteria—A situation where one cannot make an informed decision as to which model performs best when taking all criteria into account. In order to overcome this methodological problem, Xu and Ouenniche [1] proposed a multidimensional framework based on an input-oriented radial super-efficiency Data Envelopment Analysis (DEA) model to rank order competing forecasting models of crude oil prices’ volatility. However, their approach suffers from a number of issues. In this paper, we overcome such issues by proposing an alternative framework.展开更多
文摘Since the “smart growth” was put forward in the late 90s, it has become an accepted design idea and concept in the field of urban design in the world, and has been deeply studied and applied. In order to better promote “smart grown”, we set up an evaluation system, which consists of eleven indicators. In this paper, Oxford City and Fengzhen City are used as the objects of the study. Then smart growth evaluation model is established. The weight of the index is calculated by the entropy method. We use the model to evaluate the development plans of the two cities, from which to calculate the contribution of the indicators on the level of smart growth. Finally, we use the super-efficient data envelopment analysis model (DEA) to rank the importance of the indicators to the smart growth. The results show that the level of smart growth in Oxford is higher than that in Fengzhen. And “Multifunctional Building Density in Central City”, “The Density of Public Area in Central City” two indicators account for more than 36% weight. The contribution of the two indicators is also located in the top two indicators. Two cities focus on the direction of smart growth is also different. In summary, the differences between China and Western countries in urban planning are mainly focused on housing and public resources.
文摘With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the literature revealed that most studies tend to use several performance criteria to evaluate the performance of competing forecasting models;however, models are compared to each other using a single criterion at a time, which often leads to different rankings for different criteria—A situation where one cannot make an informed decision as to which model performs best when taking all criteria into account. In order to overcome this methodological problem, Xu and Ouenniche [1] proposed a multidimensional framework based on an input-oriented radial super-efficiency Data Envelopment Analysis (DEA) model to rank order competing forecasting models of crude oil prices’ volatility. However, their approach suffers from a number of issues. In this paper, we overcome such issues by proposing an alternative framework.