期刊文献+
共找到2,557篇文章
< 1 2 128 >
每页显示 20 50 100
Study of Sands from Bamendou-West Cameroon: Valorization for Concrete Mix Design
1
作者 Keubou Tatapzia Vladimir Willianov Guimezap Kenou Willy Chance +2 位作者 Manefouet Bertile Ilalie Kamga Djoumen Tatiana Ngapgue François 《Journal of Geoscience and Environment Protection》 2024年第5期345-354,共10页
Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases... Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases lead to the total ruin of the works. In order to overcome these infrastructural problems, the main objective of this study is set at the improvement of the service life of structures built in Cameroon using local materials formed under climatic, geological and geotechnical conditions similar to those of materials in Bamendou. Eight sand samples were taken from the most representative and exploited quarries. The identification and classification of the sand taken from the most representative quarries in the study area show that they are mainly clayey, with an average sand equivalent of 57.54. In terms of granulometry, the curves of several sand samples do not fall within the granular range of sands used in the formulation of concrete. The modulus of fineness obtained by particle size analysis varies from 2.91 to 3.92 with an average of 3.31. 展开更多
关键词 Residual sand Formulation of concrete sand Equivalent Fitness Modulus Particle Size Bamendou
下载PDF
Investigation of Carbonation of Concrete Based on Crushed Sand and Admixtures
2
作者 Jacques Herve Koung à Bediang Emmanuel Elat Assoua Moukete +1 位作者 Paul Djomou Djonga Michel Mbessa 《Journal of Minerals and Materials Characterization and Engineering》 2024年第5期247-264,共18页
Carbonation is a natural aging process that occurs in all types of concrete. One of its primary implications is the acceleration of steel corrosion caused by the phenomena of depassivation. The goal of this research i... Carbonation is a natural aging process that occurs in all types of concrete. One of its primary implications is the acceleration of steel corrosion caused by the phenomena of depassivation. The goal of this research is to investigate the carbonation of quarry sand-based concrete. The concrete is made of 100% crushed sand 0/6.3, gravel 8/15, and 15/25 from the Arab Contractor quarry in Nomayos, Cameroon, with CEM II B-P 42.5 R from CIMENCAM (Cimenteries du Cameroun). The study employed two admixtures: one with a dual superplasticizing and reducing action (Sikamen) and another with a water-repellent effect (Sika liquid). Carbonation was performed on concrete samples at the following dates: 0, 7, 14, 28, 56, 90, 180 days, one year, and six months. Carbonated concrete (CC) and non-carbonated concrete (NCC) samples are compared in terms of their physical attributes and mineralogical characteristics. The results of this investigation reveal that after more than a year and six months of carbonation, porosity decreases and permeability increases. Despite the high fineness modulus of quarry sand, the compressive strength of quarry sand-based concrete is satisfactory. Carbonation depth is relatively high on some dates, exceeding the minimal cover value for concrete reinforcement. Sikament additive increases concrete compactness and durability while decreasing permeability. Sika water repellant mixes with the lime in cement to generate complimentary crystallizations that block the mortar’s capillaries, making it watertight. 展开更多
关键词 CARBONATION concrete Crushed sand Sikamant WATER-REPELLENT
下载PDF
Effects of Manufactured-sand on Dry Shrinkage and Crccp of High-strength Concrete 被引量:5
3
作者 ZHOU Mingkai WANG Jiliang ZHU Lide HE Tusheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第2期249-253,共5页
The influences of natural sand, manufactured-sand (MS) and stone-dust (SD) in the manufactured-sand on workability, compressive strength, elastic modulus, drying shrinkage and creep properties of high-strength con... The influences of natural sand, manufactured-sand (MS) and stone-dust (SD) in the manufactured-sand on workability, compressive strength, elastic modulus, drying shrinkage and creep properties of high-strength concrete (HSC) were tested and compared. The results show that the reasonable content (7%-10.5%) of SD in MS will not deteriorate the workability of MS-HSC. It could even improve the workability. Moreover, the compressive strength increases gradually with the increasing SD content,and the MS- HSC with low SD content (smaller than 7%) has the elastic modulus which approaches that of the natural sand HSC, but the elastic modulus reduces when the SD content is high. The influence of the SD content on drying shrinkage performance of MS-HSC is closely related to the hydration age. The shrinkage rate of MS-HSC in the former 7 d age is higher than that of the natural sand HSC, but the difference of the shrinkage rate in the late age is not marked. Meanwhile the shrinkage rate reduces as the fly ash is added; the specific creep and creep coefficient of MS-HSC with 7% SD are close to those of the natural sand HSC. 展开更多
关键词 manufactured-sand natural sand high-strength concrete dry shrinkage CREEP
下载PDF
Influence of MB-value of Manufactured Sand on the Shrinkage and Cracking of High Strength Concrete 被引量:4
4
作者 王稷良 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期321-325,共5页
The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack ... The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable. 展开更多
关键词 manufactured sand methylene blue value high strength concrete anti-cracking SHRINKAGE
下载PDF
Mechanical Properties and Microstructure of Portland Cement Concrete Prepared with Coral Reef Sand 被引量:22
5
作者 王乾坤 LI Peng +2 位作者 田亚坡 CHEN Wei SU Chunyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期996-1001,共6页
The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are a... The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm. 展开更多
关键词 coral reef sand concrete mechanical properties microstructure interfacial transition zone
下载PDF
Relationships between Modified Methylene Blue Value of Microfines in Manufactured Sand and Concrete Properties 被引量:2
6
作者 刘战鳌 周明凯 LI Beixing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期574-581,共8页
To better understand and assess the effect of microfines on concrete properties, the synergetic effect of methylene blue value and content of microfines on properties of low and high strength concrete was studied and ... To better understand and assess the effect of microfines on concrete properties, the synergetic effect of methylene blue value and content of microfines on properties of low and high strength concrete was studied and then the relationships between the index of modified methylene blue value (MMBV) and concrete properties were investigated. The results show that relationships between MMBV and fresh and hardened properties of concrete can be fully established, and the correlation between MMBV and C60 concrete property is higher than the correlation between MMBV and C30 concrete. With the increase of MMBV, concrete workability and frost resistance decrease while drying shrinkage decreases; however, compressive strength and chloride-ion penetration resistance of C30 concrete have not been negatively affected whereas those of C60 concrete are significantly deteriorated when MMBV exceeds 100. To make use of microfines without remarkably damaging concrete quality, it is suggested that MMBV of microfines in MS used in C30 and C60 concrete be no more than 100. 展开更多
关键词 microfines manufactured sand modified methylene blue low and high strength concrete
下载PDF
Mechanical Properties of Sea Water Sea Sand Coral Concrete Modified with Different Cement and Fiber Types 被引量:4
7
作者 Xibo Qi Yijie Huang +3 位作者 Xiaowei Li Zhenhua Hu Jingwei Ying Dayong Li 《Journal of Renewable Materials》 SCIE EI 2020年第8期915-937,共23页
The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An exp... The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An experimental campaign was developed involving uniaxial compression tests and the use of digital image correlation(DIC)method to analyze the strain distribution and crack propagation of specimen.Test results indicated that the compressive strength and elastic modulus of SWSSCC were improved by adding stainless steel fibers(SSF),while polypropylene fibers(PF)enhanced the SWSSCC peak deformation.It was found that the elastic modulus and strength of SWSSCC using ordinary Portland cement(OPC)were higher compared to specimen with low alkalinity sulphoaluminate cement(LAS).Typical strain distribution changed with the variation of fiber types.The propagation and characteristics of cracks in SWSSCC containing PF were similar to those of cracks in SWSSCC.However,the propagation of cracks and the development of plastic deformation in SWSSCC were effectively hindered by adopting SSF.Finally,an analytical stress-strain expression of specimen considering the influences of fibers was established.The obtained results would provide a basis for the application of SWSSCC. 展开更多
关键词 Sea water sea sand coral concrete modified concrete mechanical properties stress-strain curve crack propagation strain distribution
下载PDF
Self-compacting Concrete-filled Steel Tubes Prepared from Manufactured Sand with a High Content of Limestone Fines 被引量:1
8
作者 李北星 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期326-329,共4页
To meet the requirements of construction of concretes filled in the steel tube arches,a C60 grade micro-expansive self-compacting concrete (SCC) was prepared from manufactured sand (MS).The utilization of MS with ... To meet the requirements of construction of concretes filled in the steel tube arches,a C60 grade micro-expansive self-compacting concrete (SCC) was prepared from manufactured sand (MS).The utilization of MS with a high content of quarry limestone fines was dealed for SCC applications.The workability,compressive and splitting strength,modulus of elasticity,restrained expansion and chloride ion permeability as well as freeze-thaw resistance of three MS-SCC mixes with fines content of 3%,7% and 10% were tested and compared with those of the natural sand (NS)-SCC mix.The experimental results indicate that the performances of the C60 MS-SCC with fines content of 7% are excellent and compared favorably with those of C60 NS-SCC. 展开更多
关键词 self-compacting concrete manufactured sand quarry fines PERFORMANCES
下载PDF
Preparation of Heavyweight Ultra-high Performance Concrete Using Barite Sand and Titanium-rich Heavy Slag Sand 被引量:2
9
作者 DING Qingjun DENG Chao +2 位作者 YANG Jun ZHANG Gaozhan HOU Dongshuai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第5期644-652,共9页
The heavyweight ultra-high performance concrete(HUHPC)was prepared with barite sand partially replaced by titanium-rich heavy slag sand(THS)at replacement proportion of 0%,30%,50%,70%and 100%in this work.The results s... The heavyweight ultra-high performance concrete(HUHPC)was prepared with barite sand partially replaced by titanium-rich heavy slag sand(THS)at replacement proportion of 0%,30%,50%,70%and 100%in this work.The results show that THS incorporation can effectively improve the mechanical properties and reduce the volume shrinkage of HUHPC.The HUHPC with 50%THS replacement reaches an apparent density of 2890 kg/m^(3)(for fresh HUHPC),28 d compressive strength of 129 MPa,28 d flexural strength of 23 MPa,28 d flexural toughness of 28.4,56 d volume shrinkage of 359×10^(-4) and,as expected,excellent durability.Microstructural investigation demonstrates that the internal curing of pre-wetted THS promotes the hydration of the surrounding cement paste thereby strengthening the interfacial transition zone,resulting in the“hard shell”formation around aggregate to“protect”the aggregate.Additionally,the“pin structure”significantly improves the cement paste-aggregate interfacial connection.The combination of“hard shell protection”and“pin structure”remarkably improve the mechanical properties of HUHPC produced with porous THS aggregate. 展开更多
关键词 heavyweight ultra-high performance concrete titanium-rich heavy slag sand mechanical properties durability internal curing
下载PDF
Effects of Sand Quality on Compressive Strength of Concrete: A Case of Nairobi County and Its Environs, Kenya 被引量:1
10
作者 Hannah Nyambara Ngugi Raphael Ndisya Mutuku Zachary Abiero Gariy 《Open Journal of Civil Engineering》 2014年第3期255-273,共19页
Failure of concrete structures leading to collapse of buildings has initiated various researches on the quality of construction materials. Collapse of buildings resulting to injuries, loss of lives and investments has... Failure of concrete structures leading to collapse of buildings has initiated various researches on the quality of construction materials. Collapse of buildings resulting to injuries, loss of lives and investments has been largely attributed to use of poor quality concrete ingredients. Information on the effect of silt and clay content and organic impurities present in building sand being supplied in Nairobi County and its environs as well as their effect to the compressive strength of concrete was lacking. The objective of this research was to establish level of silt, clay and organic impurities present in building sand and its effect on compressive strength of concrete. This paper presents the findings on the quality of building sand as sourced from eight supply points in Nairobi County and its environs and the effects of these sand impurities to the compressive strength of concrete. 27 sand samples were tested for silt and clay contents and organic impurities in accordance with BS 882 and ASTM C40 respectively after which 13 sand samples with varying level of impurities were selected for casting of concrete cubes. 150 mm × 150 mm × 150 mm concrete cubes were cast using concrete mix of 1:1.5:3:0.57 (cement:sand:coarse aggregates:water) and were tested for compressive strength at the age of 7, 14 and 28 days. The investigation used cement, coarse aggregates (crushed stones) and water of similar characteristics while sand used had varying levels of impurities and particle shapes and texture. The results of the investigations showed that 86.2% of the sand samples tested exceeded the allowable limit of silt and clay content while 77% exceeded the organic content limit. The level of silt and clay content ranged from 42% to 3.3% for while organic impurities ranged from 0.029 to 0.738 photometric ohms for the unwashed sand samples. With regard to compressive strength, 38% of the concrete cubes made from sand with varying sand impurities failed to meet the design strength of 25 Mpa at the age of 28 days. A combined regression equation of with R2 = 0.444 was generated predicting compressive strength varying levels of silt and clay impurities (SCI), and organic impurities (ORG) in sand. This implies that 44% of concrete’s compressive strength is contributed by combination of silt and clay content and organic impurities in sand. Other factors such as particle shapes, texture, workability and mode of sand formation also play a key role in determination of concrete strength. It is concluded that sand found in Nairobi County and its environs contain silt and clay content and organic impurities that exceed the allowable limits and these impurities result in significant reduction in concrete’s compressive strength. It is recommended that the concrete design mix should always consider the strength reduction due to presence of these impurities to ensure that target strength of the resultant concrete is achieved. Formulation of policies governing monitoring of quality of building sand in Kenya and other developed countries is recommended. 展开更多
关键词 sand QUALITY Silt and Clay IMPURITIES Organic IMPURITIES concrete Cube Compressive Strength BUILDINGS Collapse BUILDINGS Failure
下载PDF
Pumpability of Manufactured Sand Self-compacting Concrete
11
作者 LI Huajian HUANG Fali +5 位作者 TU Haifeng SUN Deyi WANG Zhen YI Zhonglai YANG Zhiqiang XIE Yongjiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1382-1390,共9页
By the addition of superplasticizer and air entraining agent,manufactured sand selfcompacting concrete(MS SCC)with slump flow varying from 500 to 700 mm and air content varying from 2.0%to 9.0%were prepared and the pu... By the addition of superplasticizer and air entraining agent,manufactured sand selfcompacting concrete(MS SCC)with slump flow varying from 500 to 700 mm and air content varying from 2.0%to 9.0%were prepared and the pumpability of MS SCC was studied by a sliding pipe rheometer(Sliper).According to the Kaplan’s model,the initial pump pressure and the pump resistance of MS SCC were obtained.Meanwhile,rheological properties including the yield stress and the plastic viscosity of MS SCC were measured by a rheometer.The experimental results show that the increase of slump flow contributes to a higher pumpability and a proper air content,i e,6%is beneficial for the pumpability of MS SCC.Due to the existence of stone powder and stronger angularity of MS,the initial pump pressure of MS SCC is only about 60%-88%that of river sand(RS)SCC with the same slump flow and air content,indicating that MS SCC possesses a higher pumpability than RS SCC. 展开更多
关键词 manufactured sand self-compacting concrete PUMPABILITY sliding pipe rheometer RHEOLOGY
下载PDF
Bearing Behavior of Cast-in-Place Expansive Concrete Pile in Coral Sand Under Vertical Loading
12
作者 DING Xuan-ming DENG Wei-ting +2 位作者 PENG Yu ZHOU Hang WANG Chun-yan 《China Ocean Engineering》 SCIE EI CSCD 2021年第3期352-360,共9页
The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both ... The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both model tests and numerical simulation are performed to reveal the bearing mechanism of expansive concrete pile in coral sand.Results showed that the lateral earth pressure near pile increases obviously and the side friction of piles is improved,after adding expansion agent to the concrete.The horizontal linear expansion is 1.11%and the bearing capacity increased 41%for the pile,when 25%expansion agent is added.Results in finite element numerical simulation also show that ultimate bearing capacity increases with the increase of the linear expansion ratio.Besides,the area for obvious increase in side friction is below the surface of soil about three times the pile diameter,and the expansion leads to a high side friction sharing of the pile.Therefore,the cast-in-place expansive concrete pile is effective in improving the bearing capacity of piles in coral sand. 展开更多
关键词 bearing behavior expansive concrete pile coral sand side friction numerical simulation
下载PDF
Influence of Aggregate Grain Size on the Formulation of Sand Concrete in the Construction Industry in Congo
13
作者 Charlène Bassolokidi Nkengue Narcisse Malanda +2 位作者 Gilbert Ganga Paul Louzolo-Kimbembe Guy Richard Mouengue 《Geomaterials》 2019年第4期81-96,共16页
The main objective of this study is to contribute to the optimization of the formulation of sand concretes and its valorisation according to natural sands from different quarries or extraction sites. Physical characte... The main objective of this study is to contribute to the optimization of the formulation of sand concretes and its valorisation according to natural sands from different quarries or extraction sites. Physical characteristics of natural sands have been determined and improved by the addition of crushing sand, taking into account the too fine elements of the sand. Four types of sand were used (Congo River, Djiri, Mfilou, crushed sand). The concrete formulations proposed from improved sands (30% crushed sand and 70% natural sand) reveal an increase in mechanical strength. Thus, it appeared that this improvement of the natural fine sands by the crushing sand has brought a clear increase in the maneuverability of the concretes and the physico-mechanical characteristics of nearly 50%, although this crushing sand has a sand equivalent value of less than 70%. These results augur well for the durability of structures in the construction industry in Congo. 展开更多
关键词 sand FORMULATION RECOVERY Materials sand concrete Physico-Mechanical Characteristics Construction
下载PDF
Comparative Study of Self-Compacting Concrete with Manufactured and Dune Sand
14
作者 Leila Zeghichi Zeid Benghazi Laid Baali 《Journal of Civil Engineering and Architecture》 2012年第10期1429-1434,共6页
Sand is an inert element essential in the composition of concrete; its use ensures granular continuity between the cement and gravel for better cohesion of concrete. This paper presents the results of a study that inv... Sand is an inert element essential in the composition of concrete; its use ensures granular continuity between the cement and gravel for better cohesion of concrete. This paper presents the results of a study that investigated the influence of sand quality on the properties of fresh and hardened SCC (self-compacting concrete). The dune sands are very fine materials characterized by a high intergranular porosity, high surface area and low fineness modulus; on the other hand crushed (manufactured) sand has a high rate into thin and irregular shapes which influence the workability of concrete. The amount of dune sand varies from (0%, 50% to 100%) by weight of fine aggregates. The results show that the rheological properties favour the use of dune sands; however the mechanical properties support the use of crushed sand. 展开更多
关键词 Self-compacting concrete dune sand crushed sand FLOWABILITY segregation resistance.
下载PDF
An Evaluation of the Water Absorption and Density Properties of Expanded Polystyrene Sanded Concrete
15
作者 Johnson C. Abah Emmanuel E. Ndububa Elias O. Ikpe 《Open Journal of Civil Engineering》 2018年第4期524-532,共9页
In this paper, the evaluation of the mechanical and hygro-thermal properties of expanded polystyrene-sanded lightweight concrete (EPSLC) was examined. Evaluated are the mechanical properties in terms of density;and th... In this paper, the evaluation of the mechanical and hygro-thermal properties of expanded polystyrene-sanded lightweight concrete (EPSLC) was examined. Evaluated are the mechanical properties in terms of density;and the hygro-thermal property using water absorption (capillary absorption and total immersion) as measures. The research used 30% volume of EPS to replace natural coarse aggregate to produce a lightweight concrete, which is expected to be economical, serviceable and meet the required standards for lightweight concretes. The concrete bulk and oven dry densities were obtained as 1789 KN/m3 and 1674 kg/m3 respectively, while the total water and capillary water absorption increases with time of suction. The high rate of water absorption at the early periods of the test has corresponding capillary coefficient of steep slope within the same period. The relationship between the variables Q the water absorption per unit area of the specimen and K the capillary coefficient, is that as the water absorption gets higher, so does the capillary coefficient and the percentage of the variation is expressed by the correlation coefficient R2. Therefore, the values of R2 as depicted in the graphs shows a high percentage of variation. The moisture capacity is 6.9%. All the laboratory tests were, conducted in accordance with standard codes of practice. The significance of the research is that innovative technology is employed to modify and improve processes in construction industry, thus, enhancing sustainable environmental, management of industrial waste, and cheaper and economic construction. With the 30% replacement of coarse aggregate, the density and water absorption properties of concrete produced are within acceptable limits. Therefore, EPS can be used to produce lightweight concrete that will perform the required function at this level of replacement. 展开更多
关键词 PROPERTIES Expanded POLYSTYRENE sanded concrete DENSITY WATER ABSORPTION
下载PDF
Freeze-Thaw Effect on Coarse Sand Coated Interface between FRP and Concrete
16
作者 Keunhee Cho Sung Yong Park +2 位作者 Sung Tae Kim Jeong-Rae Cho Byung-Suk Kim 《Engineering(科研)》 2013年第10期807-815,共9页
This paper examines the effect of freezing and thawing on the coarse sand coating chosen to achieve the composition of FRP and concrete in FRP-concrete composite deck. Push-out test specimens with dimensions of 100 &#... This paper examines the effect of freezing and thawing on the coarse sand coating chosen to achieve the composition of FRP and concrete in FRP-concrete composite deck. Push-out test specimens with dimensions of 100 × 100 × 450 mm were subjected to repeated freeze-thaw cycles under wet conditions ranging from -18℃± 2℃ to 4℃ ± 2℃. The failure strength of the interface and the deformation of FRP at failure exhibited by the specimens that experienced 300 freezing-thawing cycles showed a difference of merely 5% compared to those of the specimens that were not subjected to freeze-thaw. This indicates that coarse sand coating is not affected by freezing-thawing cycles and the FRP-concrete composite deck owns sufficient applicability in terms of durability against freezing-thawing. 展开更多
关键词 FREEZE-THAW Coarse sand Coating INTERFACE Failure FRP concrete
下载PDF
Basic Properties of Concrete Incorporating Recycled Ceramic Aggregate and Ultra-fine Sand
17
作者 刘凤利 LIU Junhua +2 位作者 马保国 HUANG Jian LI Hainan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期352-360,共9页
Recycled ceramic mixed sand(RCMS) was obtained by partially replacing ultra-fine sand with recycled ceramic coarse sand(RCCS). The effects of RCCS replacement rate on the apparent density, workability, compressive... Recycled ceramic mixed sand(RCMS) was obtained by partially replacing ultra-fine sand with recycled ceramic coarse sand(RCCS). The effects of RCCS replacement rate on the apparent density, workability, compressive strength and splitting tensile strength of recycled ceramic concrete(RCC) were investigated. In addition, the relationship between the water-cement ratio and compressive strength of RCC was also studied. The experimental results indicate that the reusing of recycled ceramic aggregate can improve the cohesiveness and water retentiveness of fresh concrete and benefit the mechanical properties development. When the RCCS replacement rate is not less than 40%, the mechanical properties of RCC are superior to those of the reference concrete. Moreover, when recycled ceramic medium sand was completely used as fine aggregate, the maximum increase in both compressive strength and splitting tensile strength were obtained, comparing with those of reference concrete, the increment ratio was 19.85% and 32.73%, respectively. The microscopic analysis shows that the using of recycled ceramic aggregate can meliorate distinctly the structure of the interfacial transition zone(ITZ) and increase the compaction degree of cement paste. Furthermore, an expression of the compressive strength of RCC and the cement-water ratio is regressed and gains a good linear relativity. It is an effective way to recycle waste ceramic, and the consumption of recycled ceramic aggregate could reach from 26.9% to 47.6% of the total weight of aggregate in producing concrete. 展开更多
关键词 recycled ceramic coarse sand(RCCS) ultra-fine sand recycled ceramic concrete(RCC) property regression analysis sustainability
下载PDF
Equal Volumes of Sand and Gravel Concrete Mix Ratios in Cameroon and Its Effect on Concrete Compressive Strength
18
作者 Patrick Bame Che Yamb Bell Emmanuel Ndigui Billong 《World Journal of Engineering and Technology》 2022年第3期539-549,共11页
In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of thi... In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25. 展开更多
关键词 Conventional concrete Rationalized concrete Mix Ratio Compressive Strength Equal Volumes of sand and Gravel
下载PDF
Constraints in Using Manufactured Sands in Concrete Pavements in Australia
19
作者 Ion Dumitru Tony Song +1 位作者 Bob Bornstein Vute Sirivivatnanon 《Journal of Civil Engineering and Architecture》 2015年第11期1318-1324,共7页
Due to the shortages of natural sands along the east coast of Australia in particular and the need to fully utilise fines produced in quarry operations, progress has been made in utilising blends of manufactured sands... Due to the shortages of natural sands along the east coast of Australia in particular and the need to fully utilise fines produced in quarry operations, progress has been made in utilising blends of manufactured sands and natural sands in concrete pavements. This paper documents some of the constraints in utilising larger proportions of manufactured sands in concrete pavements. These constraints are mainly caused by the current level of knowledge regarding the impact of manufactured sands on skid and abrasion resistance of concrete pavements. This paper presents a brief review of literature on this subject in the USA, France and UK. It also briefly documents work recently carried out in Australia by CCAA (Cement Concrete and Aggregates Australia), referring to the skid and abrasion resistance of concrete pavements using manufactured sands. The paper concludes that there is no relationship between the free silica content and the skid resistance. With regard to the abrasion resistance, it is rather the curing conditions and the compressive strength that are more important in achieving good results. 展开更多
关键词 Manufactured sand concrete pavements skid resistance abrasion resistance free silica content
下载PDF
River Sand Characterization for Its Use in Concrete: A Revue
20
作者 Muhindo Wa Muhindo Abdias Manjia Marcelline Blanche +3 位作者 Ursula Joyce Pettang Nana Henry Fonbeyin Abanda Ngapgue François Pettang Chrispin 《Open Journal of Civil Engineering》 2023年第2期353-366,共14页
Despite the gradual professionalization of the construction sector as well as the abundance of sand mining sites offered by the North Kivu, Democratic Republic of Congo Region, ignorance of materials by local builders... Despite the gradual professionalization of the construction sector as well as the abundance of sand mining sites offered by the North Kivu, Democratic Republic of Congo Region, ignorance of materials by local builders persists. This is the case of quarries extracting river sand used to make concrete and mortar. However, the dosages of the various constituents are most often chosen on the basis of experience without any prior characterization of this material. This paper presents a comprehensive review of the characterization of river sand for its use in concrete in DRC. The origin and global use of river sand in construction are presented in percentage terms to highlight the importance of river sand as a construction material. The physical properties of river sand, including particle size distribution, bulk density, absolute density, and cleanliness are discussed in detail. The paper examines the effect of variations in river sand properties on concrete behavior, including density and compressive strength. Overall, this paper emphasizes the need to properly characterize river sand before using it in construction to ensure durable, high-quality structures. This will avoid the problems that are observed in particular a bad behavior of the coating on the walls;cracks and crumbling of the beams, lintels, posts and even the ruin of the structures. 展开更多
关键词 CHARACTERIZATION River sand concrete Construction Material STRUCTURE
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部