Liaohe super-heavy crude oil was separated into its components, namely saturates, aromatics, resins, and asphaltenes (SARA), by the group separation method. Several solvents were used to extract different forms of m...Liaohe super-heavy crude oil was separated into its components, namely saturates, aromatics, resins, and asphaltenes (SARA), by the group separation method. Several solvents were used to extract different forms of metallic elements from crude oil. The metallic elements, such as calcium, nickel, iron and manganese, in crude oil, SARA and extract samples were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results demonstrate that the contents of calcium, nickel, iron, and manganese gradually increase in saturates, aromatics, resins, and asphaltenes, suggesting that the abundance of the four metallic elements in asphaltenes is much higher than that in the other groups. For example, the content of calcium in asphaltenes reaches a maximum of 7,920 pg/g. Among the SARA components of Liaohe super-heavy crude oil, resins account for more than 50 wt%, suggesting that the total amount of the four metallic elements are higher in the resin component than in other components. The four metallic elements mainly exist in the form of organic metallic compounds in crude oil. Further analysis shows that calcium and manganese elements exist mainly as metal salts of petroleum acids, and the majority of the iron and all the nickel exist mainly as metalloporphyrin and non-metalloporphyrin compounds.展开更多
In this study, petroleum acids were extracted from the super-heavy oil of Liaohe oilfield, North-east China, by using acetic acid, and their structural components and properties were investigated by using FT-IR and MS...In this study, petroleum acids were extracted from the super-heavy oil of Liaohe oilfield, North-east China, by using acetic acid, and their structural components and properties were investigated by using FT-IR and MS. Moreover, the trace metal contents in the super-heavy oil sample before and after acetic acid treatment were also measured in this work. The results showed that naphthenic acids were the main component of petroleum acids in Liaohe super-heavy oil, and the content of naphthenic acids with double rings was higher than that of other naphthenic acids. It can be concluded that petroleum acids in Liaohe super-heavy oil mainly consist of naphthenic acids, with a carbon number of around 11–69 and containing one to six naphthenic rings and/or one to two aromatic rings, and mainly exists in form of metal salts of petroleum acid. The molecular weight of petroleum acids is in the range of 190–1000.展开更多
Super-heavy oil is a significant unconventional energy source,and more than 30 years of research have shown that steam-assisted gravity drainage(SAGD)technology is suitable for thick super-heavy oil reservoirs.Recentl...Super-heavy oil is a significant unconventional energy source,and more than 30 years of research have shown that steam-assisted gravity drainage(SAGD)technology is suitable for thick super-heavy oil reservoirs.Recently,more and more thin-layer super-heavy oil reservoirs have been discovered in China,while their deep buried depth and serous heterogeneity make the existing SAGD technology difficult to apply,so it is urgent to improve the existing SAGD technology for the thin-layer super-heavy oil.To this end,this paper focuses on the enlightenment of field application in SAGD technology.Firstly,based on typical SAGD field projects,the development history of SAGD technology in the world was reviewed,and the influence of reservoir physical properties on the application of SAGD technology in thin-layer superheavy oil reservoirs was analyzed.Secondly,the well pattern,wellbore structure,pre-heating,artificial lift,and monitor technique of SAGD were detailed described,and their adjustment direction was expounded for the development of thin-layer super-heavy oil reservoirs.Lastly,the gas-and solventassistant SAGD were comprehensively evaluated,and their application potential in thin-layer superheavy oil reservoirs was studied.The research results can provide theoretical guidance for the application of SAGD technology in thin-layer super-heavy oil reservoirs.展开更多
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation ...Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord Gi statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.展开更多
The center of the stability island of super-heavy nuclei(SHN)is the subject of intense experimental and theoretical investigations and has potential technological applications.^(298)^(114) Fl lies in the Z=114 isotopi...The center of the stability island of super-heavy nuclei(SHN)is the subject of intense experimental and theoretical investigations and has potential technological applications.^(298)^(114) Fl lies in the Z=114 isotopic chain as a persuasive candidate of the spherical double-magic nucleus in SHN,and in this study,the calculations of nuclear binding energies,one-nucleon and two-nucleon separation energies,a-decay energies,and the corresponding halflives provide strong evidence for this point.These calculations within an improved Weizsacker-Skyrme nuclear mass model(WS*)were performed and compared with the calculations of the finite-range droplet model(FRDM2012)and experimental data for Z=114 isotopes and N=184 isotones.Concurrently,the corresponding single-particle levels in a Woods-Saxon potential well with a spin-orbit term are calculated,which can be used as a powerful indicator to identify the shell effects existing in114298Fl.Both the study of the properties of the isotopic chain and microphysical quantities provide a vital signal that ^(298)^(114) Fl is a spherical double-magic nucleus and also the center of the SHN.展开更多
A model for cold-fusion reactions related to the synthesis of super-heavy nuclei in collisions of heavy projectile-nuclei with a ^(208)Pb target nucleus is discussed.In the framework of this model,the production of th...A model for cold-fusion reactions related to the synthesis of super-heavy nuclei in collisions of heavy projectile-nuclei with a ^(208)Pb target nucleus is discussed.In the framework of this model,the production of the com-pound nucleus by two paths,the di-nuclear system path and the fusion path,are taken into account simultaneously.The formation of the compound nucleus in the framework of the di-nuclear system is related to the transfer of nucle-ons from the light nucleus to the heavy one.The fusion path is linked to the sequential evolution of the nuclear shape from the system of contacting nuclei to the compound nucleus.It is shown that the compound nucleus is mainly formed by the fusion path in cold-fusion reactions.The landscape of the potential energy related to the fusion path is discussed in detail.This landscape for very heavy nucleus-nucleus systems has an intermediate state,which is linked to the formation of both the compound nucleus and the quasi-fission fragments.The decay of the intermediate state is taken into account in the calculation of the compound nucleus production cross sections and the quasi-fission cross sections.The values of the cold-fusion cross sections obtained in the model agree well with the experimental data.展开更多
Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics(Im QMD)model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the sta...Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics(Im QMD)model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the stability of an individual nucleus and the description of fusion cross sections at energies near the Coulomb barrier can be further improved. Simultaneously, the quasifission process in154Sm+160Gd is also investigated with the microscopic dynamics model for the first time. We find that at energies above the Bass barrier, the fusion probability is smaller than 10-5for this reaction, and the nuclear contact time is generally smaller than 1500 fm/c. From the central collisions of Sm+Gd, the neutron-rich fragments such as164,165 Gd,192W can be produced in the Im QMD simulations, which implies that the quasi-fission reaction could be an alternative way to synthesize new neutron-rich heavy nuclei.展开更多
The nuclear and Coulomb potentials between deformed nuclei with octupole deformations and arbitrary orientations are evaluated numerically. The effects of the octupole deformation on the potential between nuclei and t...The nuclear and Coulomb potentials between deformed nuclei with octupole deformations and arbitrary orientations are evaluated numerically. The effects of the octupole deformation on the potential between nuclei and the potential energy surface (PES) used in the description of the production of super-heavy nuclei (SHN) by heavy-ion fusion reactions are investigated in the di-nuclear system model. It is found that the nuclear octupole deformation significantly changes the shape of the PES, which may influence the fusion probability of the SHN. Also, PESs in the tip-belly and belly-belly cases are investigated. Finally, the quasi-fission barriers in the tip-tip and belly-belly cases are evaluated. It is found that the quasi-fission barriers of the belly-belly case are generally larger than those of the tip-tip case.展开更多
基金supported by the National Natural Science Foundation of China (No. 20576075 and 21206194)
文摘Liaohe super-heavy crude oil was separated into its components, namely saturates, aromatics, resins, and asphaltenes (SARA), by the group separation method. Several solvents were used to extract different forms of metallic elements from crude oil. The metallic elements, such as calcium, nickel, iron and manganese, in crude oil, SARA and extract samples were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results demonstrate that the contents of calcium, nickel, iron, and manganese gradually increase in saturates, aromatics, resins, and asphaltenes, suggesting that the abundance of the four metallic elements in asphaltenes is much higher than that in the other groups. For example, the content of calcium in asphaltenes reaches a maximum of 7,920 pg/g. Among the SARA components of Liaohe super-heavy crude oil, resins account for more than 50 wt%, suggesting that the total amount of the four metallic elements are higher in the resin component than in other components. The four metallic elements mainly exist in the form of organic metallic compounds in crude oil. Further analysis shows that calcium and manganese elements exist mainly as metal salts of petroleum acids, and the majority of the iron and all the nickel exist mainly as metalloporphyrin and non-metalloporphyrin compounds.
基金the National Natural Science Foundation of China (Grant No. 20576075)
文摘In this study, petroleum acids were extracted from the super-heavy oil of Liaohe oilfield, North-east China, by using acetic acid, and their structural components and properties were investigated by using FT-IR and MS. Moreover, the trace metal contents in the super-heavy oil sample before and after acetic acid treatment were also measured in this work. The results showed that naphthenic acids were the main component of petroleum acids in Liaohe super-heavy oil, and the content of naphthenic acids with double rings was higher than that of other naphthenic acids. It can be concluded that petroleum acids in Liaohe super-heavy oil mainly consist of naphthenic acids, with a carbon number of around 11–69 and containing one to six naphthenic rings and/or one to two aromatic rings, and mainly exists in form of metal salts of petroleum acid. The molecular weight of petroleum acids is in the range of 190–1000.
基金financially supported by the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant Nos.CUGGC09 and CUG200637)Opening Fund of Key Laboratory of Unconventional Oil&Gas Development(China University of Petroleum(East China)),Ministry of Education(Grant No.19CX05005A-201)the Sinopec Science and Technology Department(Grant Nos.P2006 and 33550000-21-ZC0611-0006)。
文摘Super-heavy oil is a significant unconventional energy source,and more than 30 years of research have shown that steam-assisted gravity drainage(SAGD)technology is suitable for thick super-heavy oil reservoirs.Recently,more and more thin-layer super-heavy oil reservoirs have been discovered in China,while their deep buried depth and serous heterogeneity make the existing SAGD technology difficult to apply,so it is urgent to improve the existing SAGD technology for the thin-layer super-heavy oil.To this end,this paper focuses on the enlightenment of field application in SAGD technology.Firstly,based on typical SAGD field projects,the development history of SAGD technology in the world was reviewed,and the influence of reservoir physical properties on the application of SAGD technology in thin-layer superheavy oil reservoirs was analyzed.Secondly,the well pattern,wellbore structure,pre-heating,artificial lift,and monitor technique of SAGD were detailed described,and their adjustment direction was expounded for the development of thin-layer super-heavy oil reservoirs.Lastly,the gas-and solventassistant SAGD were comprehensively evaluated,and their application potential in thin-layer superheavy oil reservoirs was studied.The research results can provide theoretical guidance for the application of SAGD technology in thin-layer super-heavy oil reservoirs.
文摘Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord Gi statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
基金supported by the National Natural Science Foundation of China(Nos.10775061,11175054,11675066,11665019,and11947229)the China Postdoctoral Science Foundation(No.2019M663853)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2017-ot04 and lzujbky-2020-it01)Feitian Scholar Project of Gansu Province。
文摘The center of the stability island of super-heavy nuclei(SHN)is the subject of intense experimental and theoretical investigations and has potential technological applications.^(298)^(114) Fl lies in the Z=114 isotopic chain as a persuasive candidate of the spherical double-magic nucleus in SHN,and in this study,the calculations of nuclear binding energies,one-nucleon and two-nucleon separation energies,a-decay energies,and the corresponding halflives provide strong evidence for this point.These calculations within an improved Weizsacker-Skyrme nuclear mass model(WS*)were performed and compared with the calculations of the finite-range droplet model(FRDM2012)and experimental data for Z=114 isotopes and N=184 isotones.Concurrently,the corresponding single-particle levels in a Woods-Saxon potential well with a spin-orbit term are calculated,which can be used as a powerful indicator to identify the shell effects existing in114298Fl.Both the study of the properties of the isotopic chain and microphysical quantities provide a vital signal that ^(298)^(114) Fl is a spherical double-magic nucleus and also the center of the SHN.
文摘A model for cold-fusion reactions related to the synthesis of super-heavy nuclei in collisions of heavy projectile-nuclei with a ^(208)Pb target nucleus is discussed.In the framework of this model,the production of the com-pound nucleus by two paths,the di-nuclear system path and the fusion path,are taken into account simultaneously.The formation of the compound nucleus in the framework of the di-nuclear system is related to the transfer of nucle-ons from the light nucleus to the heavy one.The fusion path is linked to the sequential evolution of the nuclear shape from the system of contacting nuclei to the compound nucleus.It is shown that the compound nucleus is mainly formed by the fusion path in cold-fusion reactions.The landscape of the potential energy related to the fusion path is discussed in detail.This landscape for very heavy nucleus-nucleus systems has an intermediate state,which is linked to the formation of both the compound nucleus and the quasi-fission fragments.The decay of the intermediate state is taken into account in the calculation of the compound nucleus production cross sections and the quasi-fission cross sections.The values of the cold-fusion cross sections obtained in the model agree well with the experimental data.
基金supported by the National Natural Science Foundation of China(Grant Nos.11422548,11275052,11365005 and 11375062)the Open Project Program of State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,China(Grant No.Y4KF041CJ1)
文摘Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics(Im QMD)model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the stability of an individual nucleus and the description of fusion cross sections at energies near the Coulomb barrier can be further improved. Simultaneously, the quasifission process in154Sm+160Gd is also investigated with the microscopic dynamics model for the first time. We find that at energies above the Bass barrier, the fusion probability is smaller than 10-5for this reaction, and the nuclear contact time is generally smaller than 1500 fm/c. From the central collisions of Sm+Gd, the neutron-rich fragments such as164,165 Gd,192W can be produced in the Im QMD simulations, which implies that the quasi-fission reaction could be an alternative way to synthesize new neutron-rich heavy nuclei.
基金Supported by National Natural Science Foundation of China (10975100,11011130216,10979024,10705014)the financial support from DFG of Germany and Major State Basic Research Development Progrom of China (2007CB81500)
文摘The nuclear and Coulomb potentials between deformed nuclei with octupole deformations and arbitrary orientations are evaluated numerically. The effects of the octupole deformation on the potential between nuclei and the potential energy surface (PES) used in the description of the production of super-heavy nuclei (SHN) by heavy-ion fusion reactions are investigated in the di-nuclear system model. It is found that the nuclear octupole deformation significantly changes the shape of the PES, which may influence the fusion probability of the SHN. Also, PESs in the tip-belly and belly-belly cases are investigated. Finally, the quasi-fission barriers in the tip-tip and belly-belly cases are evaluated. It is found that the quasi-fission barriers of the belly-belly case are generally larger than those of the tip-tip case.