A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypi...A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypical materials are simulated using different indicators in the centrifuge model.The silver sand,the shaft and the pile cap are simulated according to the natural density,the compressive stiffness and the bending stiffness,respectively.The finite element method(FEM)is implemented and analyzed in ANSYS,in which the stress field during the undisturbed soil stage,the boring stage,the concrete-casting stage and the curing stage are discussed in detail.Comparisons in terms of load-settlement,shaft axial force distribution and lateral friction between the numerical results and the test data are carried out to investigate the bearing behaviors of super-long rock-socketed bored pile groups under loading and unloading conditions.Results show that there is a good agreement between the centrifuge modeling tests and the FEM.In addition,the load distribution at the pile top is complicated,which is related to the stiffness of the cap,the corresponding assumptions and the analysis method.The shaft axial force first increases slightly with depth then decreases sharply,and the rate of decrease in rock is greater than that in sand and soil.展开更多
基金The Natural Science Foundation of Hubei Province(No.2007ABA094)
文摘A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypical materials are simulated using different indicators in the centrifuge model.The silver sand,the shaft and the pile cap are simulated according to the natural density,the compressive stiffness and the bending stiffness,respectively.The finite element method(FEM)is implemented and analyzed in ANSYS,in which the stress field during the undisturbed soil stage,the boring stage,the concrete-casting stage and the curing stage are discussed in detail.Comparisons in terms of load-settlement,shaft axial force distribution and lateral friction between the numerical results and the test data are carried out to investigate the bearing behaviors of super-long rock-socketed bored pile groups under loading and unloading conditions.Results show that there is a good agreement between the centrifuge modeling tests and the FEM.In addition,the load distribution at the pile top is complicated,which is related to the stiffness of the cap,the corresponding assumptions and the analysis method.The shaft axial force first increases slightly with depth then decreases sharply,and the rate of decrease in rock is greater than that in sand and soil.