期刊文献+
共找到148,384篇文章
< 1 2 250 >
每页显示 20 50 100
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:3
1
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Geochemical and petrological studies of high sulfur coal and overburden from Makum coalfield (Northeast India) towards understanding and mitigation of acid mine drainage
2
作者 Angana Mahanta Debashis Sarmah +6 位作者 Nilotpol Bhuyan Monikankana Saikia Sarat Phukan K.S.V.Subramanyam Ajit Singh Prasenjit Saikia Binoy K.Saikia 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期133-147,共15页
Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drain... Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage(AMD)through oxidation pyrite minerals.The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India.In order to have a comprehensive overview of the AMD problem in Makum coalfield,the physico-chemical,geochemical,and petrological characteristics of the coal and overburden(OB)samples collected from the Makum coalfield(Northeast India)were thoroughly investigated.The maceral compositions reveal that coal features all three groups of macerals(liptinite,vitrinite,and inertinite),with a high concentration of liptinite indicating the coal of perhydrous,thereby rendering it more reactive.Pyrite(FeS_(2))oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and(OB)samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods,and to replicate the actual mine site leaching.Inductively coupled plasma-optical emission spectroscopy(ICP-OES)was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment.The Rare earth element(REE)enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB.These experiments reveal the change in conductivity,acid producing tendency,total dissolved solid(TDS),total Iron(Fe)and dissolved Sulfate(SO_(4)^(2−))ions on progress of the leaching experiments.Moreover,the discharge of FeS_(2) via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics.A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station.Apart from neutralisation of AMD water,this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water. 展开更多
关键词 Opencast mining Pyrite oxidation coal geochemistry coal petrology Rare earth elements AMD remediation
下载PDF
Numerical analysis on the factors affecting post-peak characteristics of coal under uniaxial compression
3
作者 Zhiguo Lu Wenjun Ju +1 位作者 Fuqiang Gao Taotao Du 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期42-60,共19页
The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influ... The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts.In this study,the Synthetic Rock Mass method is employed to establish a numerical model,and the factors affecting coal post-peak characteristics are analyzed from four perspectives:coal matrix mechanical parameters,structural weak surface properties,height-to-width ratio,and loading rate.The research identifies four significant influencing factors:deformation modulus,density of discrete fracture networks,height-to-width ratio,and loading rate.The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed.The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches:weakening the mechanical properties of coal pillars,increasing the number of structural weak surfaces in coal pillars,reducing the width of coal pillars,and optimizing mining and excavation speed.The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling. 展开更多
关键词 Post-peak behavior Synthetic rock mass coal bursts coal burst prevention
下载PDF
Coal/Gangue Volume Estimation with Convolutional Neural Network and Separation Based on Predicted Volume and Weight
4
作者 Zenglun Guan Murad S.Alfarzaeai +2 位作者 Eryi Hu Taqiaden Alshmeri Wang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第4期279-306,共28页
In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using new... In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value. 展开更多
关键词 coal coal gangue convolutional neural network CNN object classification volume estimation separation system
下载PDF
Agglomeration of coal and polyethylene mixtures during fixed‑bed co‑gasification
5
作者 Igor G.Donskoy Aleksandr N.Kozlov +2 位作者 Maksim V.Penzik Denis A.Svishchev Lu Ding 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期91-100,共10页
The article presents the results of experimental studies on the gasification of mixtures of brown coal and polyethylene(up to 20 wt%fraction)in a laboratory reactor.The work aims to study the agglomeration process dur... The article presents the results of experimental studies on the gasification of mixtures of brown coal and polyethylene(up to 20 wt%fraction)in a laboratory reactor.The work aims to study the agglomeration process during the heating and oxidation of the mixtures.The measurement results(gas composition,pressure drop)provide indirect information on the dynamics of thermal decomposition and structural changes in the fuel bed.We have shown that the interaction between polyethylene and a coal surface leads to the formation of dense agglomerates,in which the molten polymer acts as a binder.Clinkers form as a result of interfacial interactions between components and filtration flow rearranging.The hydrogen/carbon ratio in the solid residue of coal-polyethylene co-gasification increases from 0.07–0.2 to 1.11,indicating the formation of stable hydrocarbon compounds on the carbon surface.The conducted research makes it possible to identify possible interactions between chemical reactions and transfer processes that lead to agglomeration in mixtures of coal with polyethylene. 展开更多
关键词 coal POLYETHYLENE GASIFICATION Combustion AGGLOMERATION
下载PDF
Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model
6
作者 Jun Guo Wenbo Huang +7 位作者 Guorui Feng Jinwen Bai Lirong Li Zi Wang Luyang Yu Xiaoze Wen Jie Zhang Wenming Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期491-505,共15页
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ... The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal. 展开更多
关键词 Extremely thick coal seam Fully mechanized top coal caving Support strength Support-surrounding rock interaction
下载PDF
Thermogravimetric characteristics of corn straw and bituminous coal copyrolysis based the ilmenite oxygen carriers
7
作者 Pengxing Yuan Xiude Hu +2 位作者 Jingjing Ma Tuo Guo Qingjie Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期8-15,共8页
Herein,the co-pyrolysis reaction characteristics of corn straw(CS)and bituminous coal in the presence of ilmenite oxygen carriers(OCs)are investigated via thermogravimetry coupled with mass spectrometry.The results re... Herein,the co-pyrolysis reaction characteristics of corn straw(CS)and bituminous coal in the presence of ilmenite oxygen carriers(OCs)are investigated via thermogravimetry coupled with mass spectrometry.The results reveal that the participation of OCs weakens the devolatilization intensity of co-pyrolysis.When the CS blending ratio is<50%,the mixed fuel exhibits positive synergistic effects.The fitting results according to the Coats-Redfern integral method show that the solid-solid interaction between OCs and coke changes the reaction kinetics,enhancing the co-pyrolysis reactivity at the high-temperature zone(750-950C).The synergistic effect is most prominent at a 30%CS blending ratio,with copyrolysis activation energy in the range of 26.35-40.57 kJ·mol^(-1). 展开更多
关键词 Oxygen carrier CO-PYROLYSIS BIOMASS coal
下载PDF
Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China
8
作者 ZHAO Zhe XU Wanglin +8 位作者 ZHAO Zhenyu YI Shiwei YANG Wei ZHANG Yueqiao SUN Yuanshi ZHAO Weibo SHI Yunhe ZHANG Chunlin GAO Jianrong 《Petroleum Exploration and Development》 SCIE 2024年第2期262-278,共17页
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro... To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China. 展开更多
关键词 coal rock gas coalbed methane medium-to-high rank coal CLEAT Ordos Basin Carboniferous Benxi Formation risk exploration
下载PDF
Theoretical analysis and engineering application of controllable shock wave technology for enhancing coalbed methane in soft and low‑permeability coal seams
9
作者 Guodong Qiao Zegong Liu +4 位作者 Yongmin Zhang Changping Yi Kui Gao Shigui Fu Youzhi Zhao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期123-142,共20页
Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas con... Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams. 展开更多
关键词 CSW antireflection in coal seams CBM extraction enhancement Soft and low-permeability coal seams Field test
下载PDF
Effect and Mechanism of Rare Earth Hydrotalcite Inhibiting Coal Spontaneous Combustion
10
作者 张小娟 LIU Bo +1 位作者 罗振敏 SUN Lu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期50-59,共10页
A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition... A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition effect and mechanism were analyzed by scanning electron microscopy(SEM),X-ray diffraction(XRD), thermal performance analysis, in-situ diffuse reflectance infrared spectroscopy and temperature-programmed experiment. The results have shown that the inhibitor containing lanthanum can play a good inhibitory role in every stage of coal oxidation. During the slow oxidation of coal samples, the inhibitor containing lanthanum ions can slow down the oxidation process of coal and increase the initial temperature of coal spontaneous combustion. At the same time, because the hydroxyl groups in LDHs are connected with-COO-groups on the coal surface through hydrogen bonds, the stability of coal is improved. With the increase of temperature, LDHs can remove interlayer water molecules and reduce the surface temperature of coal. CO release rate of coal samples decreases significantly after adding inhibitor containing lanthanum element, and the maximum inhibition rate of the inhibitor is 58.1%. 展开更多
关键词 rare earth HYDROTALCITE coal spontaneous combustion MECHANISM
下载PDF
Whole petroleum system in Jurassic coal measures of Taibei Sag in Tuha Basin,NW China
11
作者 ZHI Dongming LI Jianzhong +6 位作者 YANG Fan CHEN Xuan WU Chao WANG Bo ZHANG Hua HU Jun JIN Jikun 《Petroleum Exploration and Development》 SCIE 2024年第3期519-534,共16页
Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the ... Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the Jurassic Shuixigou Group in the Taibei Sag is established using the concept of the whole petroleum system,and the coal-measure whole petroleum system is analyzed thoroughly.The results are obtained in three aspects.First,the coal-measure source rocks of the Badaowan Formation and Xishanyao Formation and the argillaceous source rocks of the Sangonghe Formation in the Shuixigou Group exhibit the characteristics of long-term hydrocarbon generation,multiple hydrocarbon generation peaks,and simultaneous oil and gas generation,providing sufficient oil and gas sources for the whole petroleum system in the Jurassic coal-bearing basin.Second,multi-phase shallow braided river delta–shallow lacustrine deposits contribute multiple types of reservoirs,e.g.sandstone,tight sandstone,shale and coal rock,in slope and depression areas,providing effective storage space for the petroleum reservoir formation in coal-measure strata.Third,three phases of hydrocarbon charging and structural evolution,as well as effective configuration of multiple types of reservoirs,result in the sequential accumulation of conventional-unconventional hydrocarbons.From high structural positions to depression,there are conventional structural and structural-lithological reservoirs far from the source,low-saturation structural-lithological reservoirs near the source,and tight sandstone gas,coal rock gas and shale oil accumulations within the source.Typically,the tight sandstone gas and coal rock gas are the key options for further exploration,and the shale oil and gas in the depression area is worth of more attention.The new understanding of the whole petroleum system in the coal measures could further enrich and improve the geological theory of the whole petroleum system,and provide new ideas for the overall exploration of oil and gas resources in the Tuha Basin. 展开更多
关键词 Tuha Basin Taibei Sag Middle and Lower Jurassic whole petroleum system coal measure tight oil and gas coal rock gas shale oil
下载PDF
Study of Pyrolysis Characteristics and Kinetic Analysis of Shenmu Coal at a High Heating Rate Using TG-FTIR
12
作者 An Xiaoxi Zhang Yanpeng +2 位作者 Shang Yanchao Tian Yuanyu Qiao Yingyun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期47-55,共9页
Coal pyrolysis is a fundamental reaction in the thermal processing and utilization of coal.Investigating the behavior and kinetics of coal pyrolysis is crucial for optimizing,designing,and developing a composite riser... Coal pyrolysis is a fundamental reaction in the thermal processing and utilization of coal.Investigating the behavior and kinetics of coal pyrolysis is crucial for optimizing,designing,and developing a composite riser for the staged pyrolysis gasification process of pulverized coal.In this study,the non-isothermal pyrolysis behavior and kinetics of coal were examined at different heating rates(30,50,100,300,500,700,and 900℃/min)using thermogravimetry(TG)coupled with Fourier-transform infrared spectroscopy.Analysis of the TG/derivative TG(TG/DTG)curves indicated that coal pyrolysis mainly occurred between 300℃ and 700℃.Higher heating rates led to more volatiles being released from the coal,and a higher temperature was required to achieve rapid pyrolysis.Kinetic analysis showed that both the model-free methods(Friedman,Flynn-Wall-Ozawa,and Kissinger-Akahira-Sunose)and the model-based method(Coats-Redfern)effectively describe the coal pyrolysis process.The change in the Ea values between the two kinetic models was consistent throughout the pyrolysis process,and the most probable mechanism was the F2 model(secondary chemical reaction).In addition,the heating rate did not change the overall reaction order of the pyrolysis process;however,a higher heating rate resulted in a decrease in the Ea value during the initial pyrolysis stage. 展开更多
关键词 coal pyrolysis TG-FTIR characteristic parameters DYNAMICS
下载PDF
A critical review on direct catalytic hydrogasification of coal into CH_(4):catalysis process configurations,evaluations,and prospects
13
作者 Shuai Yan Jun Feng +4 位作者 Shenfu Yuan Zihong Xia Fengshuang Han Xuan Qu Jicheng Bi 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期51-85,共35页
Coal catalytic hydrogasification(CCHG)is a straightforward approach for producing CH_(4),which shows advantages over the mature coal-to-CH_(4) technologies from the perspectives of CH_(4) yield,thermal efficiency,and ... Coal catalytic hydrogasification(CCHG)is a straightforward approach for producing CH_(4),which shows advantages over the mature coal-to-CH_(4) technologies from the perspectives of CH_(4) yield,thermal efficiency,and CO_(2) emission.The core of CCHG is to make carbon in coal convert into CH_(4) efficiently with a catalyst.In the past decades,intensive research has been devoted to catalytic hydrogasification of model carbon(pitch coke,activated carbon,coal char).However,the chemical process of CCHG is still not well understood because the coal structure is more complicated,and CCHG is a combination of coal catalytic hydropyrolysis and coal char catalytic hydrogasification.This review seeks to shed light on the catalytic process of raw coal during CCHG.The configuration of suitable catalysts,operating conditions,and feedstocks for tailoring CH_(4) formation were identified,and the underlying mechanisms were elucidated.Based on these results,the CCHG process was evaluated,emphasizing pollutant emissions,energy efficiency,and reactor design.Furthermore,the opportunities and strategic approaches for CCHG under the restraint of carbon neutrality were highlighted by considering the penetration of“green”H2,biomass,and CO_(2) into CCHG.Preliminary investigations from our laboratories demonstrated that the integrated CCHG and biomass/CO_(2) hydrogenation process could perform as an emerging pathway for boosting CH_(4) production by consuming fewer fossil fuels,fulfilling the context of green manufacturing.This work not only provides systematic knowledge of CCHG but also helps to guide the efficient hydrogenation of other carbonaceous resources such as biomass,CO_(2),and coal-derived wastes. 展开更多
关键词 coal gasification Catalytic hydrogasification Methane Pressurized fluidized bed
下载PDF
Organic petrographic and mineralogical composition of the No. 6 coal seam of the Soutpansberg Coalfield, South Africa: Insights into paleovegetation and depositional environment
14
作者 Sanki Biswas Nicola J.Wagner Ofentse M.Moroeng 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期190-207,共18页
This study investigates the paleodepositional conditions of the No.6 Seam of the Madzaringwe Formation in Makhado and Voorburg south area of the Soutpansberg Coalfield(Limpopo Province,South Africa)utilizing organic p... This study investigates the paleodepositional conditions of the No.6 Seam of the Madzaringwe Formation in Makhado and Voorburg south area of the Soutpansberg Coalfield(Limpopo Province,South Africa)utilizing organic petrography and inorganic geochemical proxies.The coals are predominantly high-volatile bituminous B-A rank with high ash yields(avg.36.1 wt%),characterized by high-vitrinite(~41.5 vol%),moderate-to-high inertinite(9.8 vol%–33.7 vol%)and low liptinite(~2.3 vol%).The distribution of inertinite varies among different coal horizons(from bottom-lower to middle-upper),suggesting differential oxidation conditions and/or paleofire occurrence.Vitrinite-to-inertinite(V/I)ratio,tissue preservation–gelification index(TPI–GI),and groundwater–vegetation index(GWI–VI)plots,indicate that the peat-forming forest-swamp vegetation accumulated under mesotrophic-to-rheotrophic hydrological conditions.The presence of structured macerals(i.e.,telinite,collotelinite,fusinite,and semifusinite)suggests well-preserved plant tissues,whereas framboidal pyrite and sulphur content(0.24 wt%–2.16 wt%)point to brackish-water influence at the peat stage.The coals contain quartz,kaolinite,siderite,muscovite,dolomite,calcite,and pyrite minerals,most of which were likely sourced from felsic igneous rocks.The Al/(Al+Fe+Mn)and(Fe+Mn)/Ti ratios for the studied samples range between 0.24–0.97 and 0.57–70.10,respectively.The ratios,Al–Fe–Mn plot,and presence of massive botryoidal-type pyrite imply some influence of meteoric waters or fluids from hydrothermal activity post-deposition.Moreover,the chemical index of alteration(CIA:98.25–99.67),chemical index of weathering(CIW:92.04–97.66),and A–CN–K ternary diagram suggest inorganic matter suffered strong chemical weathering,indicating warm paleoclimatic conditions during the coal formation. 展开更多
关键词 MACERALS coal facies Geochemical-indices Hydrothermal Madzaringwe formation Soutpansberg coalfield
下载PDF
Mechanical properties and energy evolutions of burst-prone coal samples with holes and fillings
15
作者 Yukai Fu Yongzheng Wu +3 位作者 Junchen Li Penghe Zhou Zhuoyue Sun Jie He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期176-189,共14页
During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa... During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body. 展开更多
关键词 Rock mechanics coal Mechanical properties Hole filling Energy evolution
下载PDF
Responses of soil stoichiometry and soil enzyme activities in the different distance around opencast coal mine of the Hulun Buir Grassland of China
16
作者 Yinli Bi Nan Guo +2 位作者 Yanxu Zhang Xianglei Li Ziheng Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期221-231,共11页
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis... The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes. 展开更多
关键词 Opencast coal mine Soil stoichiometry Soil enzyme activities DISTANCE GRASSLAND
下载PDF
A mini review on the separation of Al,Fe and Ti elements from coal fly ash leachate
17
作者 Yuan Shi Fengqi Jiang +3 位作者 Rongjiao Wang Sasha Yang Xiaofeng Zhu Yingying Shen 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期1-15,共15页
The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coa... The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coal-fired thermal power plants produce a great amount of by-product coal fly ash every year.Coal fly ash disposal in landfills requires a sizable space and has negative environmental impacts.Therefore,it is crucial to develop new technologies and methods to utilize this enormous volume of solid waste in order to protect the environment.In this review,the fundamental physical and chemical character-istics of coal fly ash are introduced,and afterward the disposal policies and utilization ways of coal fly ash are discussed to gain a comprehensive understanding of the various ways this waste.The leaching of valuable metals in coal fly ash and the extraction of metal elements in leachate under different conditions are also summarized.Furthermore,the possibility of coal fly ash to serve as a supplementary source for mineral resources is analyzed,providing a basis for its extensive use as a raw material in the metal industry in China and worldwide. 展开更多
关键词 coal fly ash Waste utilization Metals extraction
下载PDF
Optimization of Hydrocracking Process for Enhanced BTX Production from Coal Tar-Derived Hydrorefined Products
18
作者 Wu Hao Wei Hongyuan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期139-151,共13页
Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derive... Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derived from coal tar to enhance the production of benzene,toluene,and xylene(BTX).Various reaction conditions,including reaction temperature,hydrogen pressure,space velocity,and hydrogen-to-oil volume ratio,were systematically explored to optimize BTX yields while also considering the process’s economic feasibility.The results indicate that increasing the reaction temperature from 360℃ to 390℃ significantly favors the production of BTX,with yields increasing from 21.42%to 41.14%.Similarly,an increase in hydrogen pressure from 4 MPa to 6 MPa boosts BTX production,with yields rising from 36.31%to 41.14%.Reducing the space velocity from 2 h^(-1) to 0.5 h^(-1) also favors the BTX production process,with yields increasing from 37.96%to 45.13%.Furthermore,raising the hydrogen-to-oil volume ratio from 750 to 1500 improves BTX yields from 41.61%to 45.44%.Through economic analysis,the optimal conditions for BTX production were identified as a reaction temperature of 390℃,hydrogen pressure of 5-6 MPa,space velocity of 1 h^(-1),and hydrogen-to-oil volume ratio of 1000,achieving a BTX yield of 43.73%.This investigation highlights the importance of a holistic evaluation of hydrocracking conditions to optimize BTX production.Furthermore,the findings offer valuable insights for the design and operation of industrial hydrocracking processes aimed at efficiently converting coal tar-derived hydrorefined feedstock into BTX. 展开更多
关键词 coal tar HYDROCRACKING BTX process optimization economic assessment
下载PDF
Microstructural and thermal properties of coal measure sandstone subjected to high temperatures
19
作者 Weijing Xiao Dongming Zhang +1 位作者 Shujian Li Mingyang Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2909-2921,共13页
To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-t... To study the microscopic structure,thermal and mechanical properties of sandstones under the influence of temperature,coal measure sandstones from Southwest China are adopted as the research object to carry out high-temperature tests at 25℃-1000℃.The microscopic images of sandstone after thermal treatment are obtained by means of polarizing microscopy and scanning electron microscopy(SEM).Based on thermogravimetric(TG)analysis and differential scanning calorimetric(DSC)analysis,the model function of coal measure sandstone is explored through thermal analysis kinetics(TAK)theory,and the kinetic parameters of thermal decomposition and the thermal decomposition reaction rate of rock are studied.Through the uniaxial compression experiments,the stress‒strain curves and strength characteristics of sandstone under the influence of temperature are obtained.The results show that the temperature has a significant effect on the microstructure,mineral composition and mechanical properties of sandstone.In particular,when the temperature exceeds 400℃,the thermal fracture phenomenon of rock is obvious,the activity of activated molecules is significantly enhanced,and the kinetic phenomenon of the thermal decomposition reaction of rock appears rapidly.The mechanical properties of rock are weakened under the influence of rock thermal fracture and mineral thermal decomposition.These research results can provide a reference for the analysis of surrounding rock stability and the control of disasters caused by thermal damage in areas such as underground coal gasification(UCG)channels and rock masses subjected to mine fires. 展开更多
关键词 Rock mechanics coal measure sandstone MICROMORPHOLOGY Thermal damage
下载PDF
Understanding poromechanical response of a biogenic coalbed methane reservoir
20
作者 Rohit Pandey Satya Harpalani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期32-50,共19页
Biogenic coalbed methane(BCBM)reservoirs aim to produce methane from in situ coal deposits following microbial conversion of coal.Success of BCBM reservoirs requires economic methane production within an acceptable ti... Biogenic coalbed methane(BCBM)reservoirs aim to produce methane from in situ coal deposits following microbial conversion of coal.Success of BCBM reservoirs requires economic methane production within an acceptable timeframe.The work reported here quantifies the findings of previously published qualitative work,where it was found that bioconversion induces strains in the pore,matrix and bulk scales.Using imaging and dynamic strain monitoring techniques,the bioconversion induced strain is quantified here.To understand the effect of these strains from a reservoir geomechanics perspective,a corresponding poromechanical model is developed.Furthermore,findings of imaging experiments are validated using core-flooding flow experiments.Finally,expected field-scale behavior of the permeability response of a BCBM operation is modeled and analyzed.The results of the study indicated that,for Illinois coals,bioconversion induced strains result in a decrease in fracture porosity,resulting in a detrimental permeability drop in excess of 60%during bioconversion,which festers itself exponentially throughout its producing life.Results indicate that reservoirs with high initial permeability that will support higher Darcian flowrates,would be better suited for coal bioconversion,thereby providing a site-selection criteria for BCBM operations. 展开更多
关键词 coal bioconversion Poromechanical model Reservoir response Bioconversion induced strain
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部