A novel super-resolution near-field optical structure (super-RENS) with bismuth (Bi) mask layer is proposed in this paper. Static optical recording tests with and without super-RENS are carried out using a 650-nm ...A novel super-resolution near-field optical structure (super-RENS) with bismuth (Bi) mask layer is proposed in this paper. Static optical recording tests with and without super-RENS are carried out using a 650-nm semiconductor laser at recording powers of 14 and 7 mW with pulse duration of 100 ns. The recording marks are observed by high-resolution optical microscopy with a charge-coupled device (CCD) camera. The results show that the Bi mask layer can also concentrate energy into the center of a laser beam at low laser power similar to the traditional Sb mask layer. The results above are further confirmed by another Ar;laser system. The third-order nonlinear response induced by the plasma oscillation at the Bi/SiN interface during laser irradiation can be used to explain the phenomenon. The calculation results are basically consistent with our experimental results.展开更多
基金This work was supported by the National "863" Project of China (No. 2002AA313030), the National Natural Science Foundation of China (No. 60207005), and Science and Technology Committee of Shanghai (No. 022261045, 03QG14057)
文摘A novel super-resolution near-field optical structure (super-RENS) with bismuth (Bi) mask layer is proposed in this paper. Static optical recording tests with and without super-RENS are carried out using a 650-nm semiconductor laser at recording powers of 14 and 7 mW with pulse duration of 100 ns. The recording marks are observed by high-resolution optical microscopy with a charge-coupled device (CCD) camera. The results show that the Bi mask layer can also concentrate energy into the center of a laser beam at low laser power similar to the traditional Sb mask layer. The results above are further confirmed by another Ar;laser system. The third-order nonlinear response induced by the plasma oscillation at the Bi/SiN interface during laser irradiation can be used to explain the phenomenon. The calculation results are basically consistent with our experimental results.