The applicability of ultrasonic pulse velocity (UPV) method to in-situ monitor setting and hardening process of foamed concrete (FC) was systematically investigated. The UPVs of various FC pastes were automaticall...The applicability of ultrasonic pulse velocity (UPV) method to in-situ monitor setting and hardening process of foamed concrete (FC) was systematically investigated. The UPVs of various FC pastes were automatically and continuously measured by a specially designed ultrasonic monitoring apparatus (UMA). Ultrasonic tests were performed on FC mixtures with different density (300, 500, 800 and 1 000 kg/m3), and different fly ash contents (0%, 20%, 40% and 60%). The influence of curing temperatures (20, 40, 60 and 80~C) was also studied. The experimental results show that three characteristic stages can be clearly identified during the setting process of an arbitrary FC paste: dormant stage, acceleration stage, and deceleration stage. Wet density, fly ash content, and curing temperature have great impact on setting behavior. A stepwise increase of the wet density results in shorter dormant stage and larger final UPV. Hydration reaction rate is obviously promoted with an increase in curing temperature. However, the addition fly ash retards the microstn,lcture formation. To aid in comparing with the ultrasonic results, the consistence spread test and Vicat needle test (VNT) were also conducted. A correlation between ultrasonic and VNT results was also established to evaluate the initial and final setting time of the FC mixtures. Finally, certain ranges of UPV with reasonable widths were suggested for the initial and final setting time, respectively.展开更多
The ceramic setting binders obtained by means of the raw mix mechano-chemical processing(mechanical dispersion and chemical interaction processes combination), used for bonding refractory concretes, become more availa...The ceramic setting binders obtained by means of the raw mix mechano-chemical processing(mechanical dispersion and chemical interaction processes combination), used for bonding refractory concretes, become more available with a subsequent increased interest in their properties because they develop initial strength during a heat up of the units within 8-10 h, in contrast to 24 h after placement for high Al_2O_3 cements(HAC). This strength development enables high temperature processing units to be relined with minimum turnaround time, thus providing a favored cost/performance ratio. The present paper identifies the predominant phosphate phases responsible for developing good mechanical-strength properties of zirconia and alumina concretes bonded with mechano-chemical binders. It sets out the colloid and crystalline phases resulted from interphase interaction that provide the basis for high concentrated bonding suspensions(HCBS) technology useful to the refractory industry.展开更多
In non-destructive testing of concrete, the ultrasonic pulse-echo technique has proven to be a reliable method for locating cracks and other internal defects. An electro-mechanical transducer is used to generate a sho...In non-destructive testing of concrete, the ultrasonic pulse-echo technique has proven to be a reliable method for locating cracks and other internal defects. An electro-mechanical transducer is used to generate a short pulse of ultrasonic stress waves that propagate into the object being inspected. Reflection of the stress pulse occurs at boundaries separating materials with different densities and elastic properties. The reflected pulse travels back to the transducer that also acts as a receiver. The received signal can give many insights to the properties of materials under test. The question arises how the setting and hardening of cement paste, mortar, and concrete can be measured continuously. Continuous measurement asks for non-destructive methods. The current testing method such as the vicat needle for cement paste and penetration resistance test for concrete methods measure at intervals. These methods can be applied before the end of setting. All these methods do not allow continuous measurements and axe partly destructive In this paper a special pulse-echo technique called "prism technique" is used to evaluate the evolution of proprieties of concrete over time. For that, an automatic system has been developed with LabVIEW program in order to monitor the time of flight of the reflected p-wave. Two mixtures of mortar are made using different proportions, of water, cement, and sand. The mortar is poured into a mould that has a form of a prism. Measurements are taken every 10 minutes over a period of 24 hours. This enabled us to plot the evolution of p-wave velocities over time for the samples and compare the results.展开更多
STARS seemed to have aligned perfectly for Chinese company China Wu Yi Co. Ltd. in recent years, At the firm's Kenya Branch office in Nairobi, an eye- catching map hanging on the wall is covered with little red dots....STARS seemed to have aligned perfectly for Chinese company China Wu Yi Co. Ltd. in recent years, At the firm's Kenya Branch office in Nairobi, an eye- catching map hanging on the wall is covered with little red dots. each one representing a project undertaken by the company in the East African country.展开更多
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture t...By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.展开更多
This research investigated the use of wood ash to partially replace cement or sand in conventional concrete, roller compacted concrete (RCC), and flowable fill. The main focus was to determine how the wood ash additio...This research investigated the use of wood ash to partially replace cement or sand in conventional concrete, roller compacted concrete (RCC), and flowable fill. The main focus was to determine how the wood ash addition affected the main fresh and hardened properties of these materials. It was found that the wood ash could be successfully incorporated into the conventional concrete. In particular, the wood ash addition not only accelerated the setting, but also improved the early and the 28-day compressive strength of concrete that contained the blast furnace slag. It was also observed that the wood ash could be positively added into RCC to facilitate the compaction and reduce the risk of segregation. In addition, the wood ash can be beneficially introduced into the flowable fill mixtures to facilitate flow, to alleviate bleeding and subsidence, as well as to achieve controlled strength especially when combined with the class C or the class F fly ash.展开更多
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance meth...Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.展开更多
The primary objective of this research was to determine optimum dosage of mixing concrete containing plasticizers and fly ash, consistent with desirable structural grade concrete properties. Factorial tests were also ...The primary objective of this research was to determine optimum dosage of mixing concrete containing plasticizers and fly ash, consistent with desirable structural grade concrete properties. Factorial tests were also conducted to investigate the four main factors: water-cementing materials ratio, water content, content of superplasticizers (SP) and fly ash content. It was found that the requirement for setting time played the dominant role in shrinkage and anti-cracking, and fly ash played a critical role in workability and reducing heat of hydration but showed insignificant effects on slump, early strength and initial setting time of concrete.展开更多
Based on a large number of orthogonal tests and theoretical analyses, the retarding mortar which meets the requirements of retard-bonded prestressed concrete was prepared. Initial setting time of the retarding mortar ...Based on a large number of orthogonal tests and theoretical analyses, the retarding mortar which meets the requirements of retard-bonded prestressed concrete was prepared. Initial setting time of the retarding mortar may vary from several hours to 15 d at 5 ℃-35 ℃ due to quantities and average curing temperature. And its 28 d compressive strength is above 35 MPa. Thus the influence of quantities on setting time and 28 d compressive strength, and the relationship between setting time and average curing temperature were investigated. The optimum quantities were obtained by studying the interaction of admixtures, and the retarding mechanism was discussed. Based on 52 retard-bonded prestressed strands by manual work from 24 retard-bonded prestressed concrete T-beams, static friction drag, change factor κ and friction factor μ were obtained from the test when retard-bonded prestressed strands were tensioned. Application of the retarding mortar will be vast in practical concrete projects.展开更多
Extra-cellular compounds, secreted by microorganisms into their surroundings, can be integrated in concrete composition as admixtures. These substances are important in biofilm formation and some of them can be used a...Extra-cellular compounds, secreted by microorganisms into their surroundings, can be integrated in concrete composition as admixtures. These substances are important in biofilm formation and some of them can be used as corrosion inhibitor of concrete reinforcement. This paper deals with products made with biological surface active compounds/agents allowing the development of more eco-friendly concrete. The influence of this environmentally friendly bio admixture on setting time, workability, bending and compressive strengths of various mortar based materials made of CEM I, CEM III and CEM V was studied. Mechanical tests were carried out to highlight the influence of admixture in workability and hardening of samples containing the biological product with ratio in the range of 0-2.5%. It was demonstrated that the presence of the new bio-compound admixture in mortar decreases their compressive strength after 28 days of standard curing, in spite of remaining higher than standard minimal strength. Furthermore, Vicat needle experiments have shown a tendency of this admixture to decrease the setting time. A discussion was finally proposed in order to correlate the setting times and the decrease of the mortar compressive strength, corresponding in fact to a hardening delay. This setting time delay could be linked to a delay of the admixtured mortar to increase its resistance. The slump results highlight the action of bio-admixture as a plasticizer on mortars because it increases their workability for a same water-cement ratio. This effect seems variable according to the added amount.展开更多
This paper discusses the findings of an experimental study on the effect of various curing procedures on the compressive strength of concrete produced by partially substituting portland cement with Palm Kernel S...This paper discusses the findings of an experimental study on the effect of various curing procedures on the compressive strength of concrete produced by partially substituting portland cement with Palm Kernel Shell Ash(PKSA).Palm kernel shell ash was utilized in a 1:2:4 mix ratio as a partial substitute for ordinary Portland cement(OPC)at percentage levels of 0%,10%,and 15%.River sand with particles passing a 4.75 mm BS sieve was used,as well as crushed aggregate with a maximum size of 20 mm,and palm kernel shell ash with particles passing a 212μm sieve.The compressive strength of the test cubes(150 mm × 150 mm × 150 mm)was determined after 7,28,and 56 days of curing.The results demonstrated that test cubes containing Palm kernel shell ash developed strength over a longer curing period than ordinary Portland cement concrete samples and that the strength changes depending on the amount of PKSA in the cube samples.The findings showed that at 28 days,test cubes with 5%,10%,and 15%PKSA content in all curing procedures utilized obtained a greater compressive strength.Curing by immersion produced the highest compressive strength in all replacement level while the concrete cured by sprinkling and spraying gives a lower strength in all replacement level.展开更多
Due to continuing aging and heavy utilization of many bridges and the limited available funds, the importance of proper bridge condition state assessment has risen recently, which is the crucial point for rational dec...Due to continuing aging and heavy utilization of many bridges and the limited available funds, the importance of proper bridge condition state assessment has risen recently, which is the crucial point for rational decision-making on MR&R activities. This paper presents a prototype of the concrete bridge condition state assessment system (CBCSAS) with the following sub-modules: inspection, parameter recognition, structural assessment, main cause identification and priority-to-action. And multi-layer neural networks, which may combine with fuzzy set theory or not, are performed to realize the structural assessment with embedding expert knowledge into the assessment system.展开更多
The increase in capacity of displacement piles with time after installation is typically known as soil/pile set-up. A full-scale field test is carried out to observe the set-up effect for open-ended concrete pipe pile...The increase in capacity of displacement piles with time after installation is typically known as soil/pile set-up. A full-scale field test is carried out to observe the set-up effect for open-ended concrete pipe piles jacked into mixed soils. Both the total capacity and the average unit shaft resistance increase approximately linearly with logarithmic time. The average increase rate for unit shaft resistance is 44% per log cycle, while the average increase for total capacity is approximately 21%. A review on case histories for long-term set-up indicates an average set-up rate of approximately 40%. Based on this, the mechanism of pile set-up is discussed in detail and a three-phase model is suggested.展开更多
基金Founded by the key laboratory of high performance civil engineering materials(2010CEM002)the National Natural Science Foundation of China(51178106,51138002)+1 种基金the Program for New Century Excellent Talents in University(NCET-08-0116),973 Program(2009CB623200)the Program sponsored for scientific innovation research of college graduate in Jiangsu province(CXLX_0105)
文摘The applicability of ultrasonic pulse velocity (UPV) method to in-situ monitor setting and hardening process of foamed concrete (FC) was systematically investigated. The UPVs of various FC pastes were automatically and continuously measured by a specially designed ultrasonic monitoring apparatus (UMA). Ultrasonic tests were performed on FC mixtures with different density (300, 500, 800 and 1 000 kg/m3), and different fly ash contents (0%, 20%, 40% and 60%). The influence of curing temperatures (20, 40, 60 and 80~C) was also studied. The experimental results show that three characteristic stages can be clearly identified during the setting process of an arbitrary FC paste: dormant stage, acceleration stage, and deceleration stage. Wet density, fly ash content, and curing temperature have great impact on setting behavior. A stepwise increase of the wet density results in shorter dormant stage and larger final UPV. Hydration reaction rate is obviously promoted with an increase in curing temperature. However, the addition fly ash retards the microstn,lcture formation. To aid in comparing with the ultrasonic results, the consistence spread test and Vicat needle test (VNT) were also conducted. A correlation between ultrasonic and VNT results was also established to evaluate the initial and final setting time of the FC mixtures. Finally, certain ranges of UPV with reasonable widths were suggested for the initial and final setting time, respectively.
文摘The ceramic setting binders obtained by means of the raw mix mechano-chemical processing(mechanical dispersion and chemical interaction processes combination), used for bonding refractory concretes, become more available with a subsequent increased interest in their properties because they develop initial strength during a heat up of the units within 8-10 h, in contrast to 24 h after placement for high Al_2O_3 cements(HAC). This strength development enables high temperature processing units to be relined with minimum turnaround time, thus providing a favored cost/performance ratio. The present paper identifies the predominant phosphate phases responsible for developing good mechanical-strength properties of zirconia and alumina concretes bonded with mechano-chemical binders. It sets out the colloid and crystalline phases resulted from interphase interaction that provide the basis for high concentrated bonding suspensions(HCBS) technology useful to the refractory industry.
文摘In non-destructive testing of concrete, the ultrasonic pulse-echo technique has proven to be a reliable method for locating cracks and other internal defects. An electro-mechanical transducer is used to generate a short pulse of ultrasonic stress waves that propagate into the object being inspected. Reflection of the stress pulse occurs at boundaries separating materials with different densities and elastic properties. The reflected pulse travels back to the transducer that also acts as a receiver. The received signal can give many insights to the properties of materials under test. The question arises how the setting and hardening of cement paste, mortar, and concrete can be measured continuously. Continuous measurement asks for non-destructive methods. The current testing method such as the vicat needle for cement paste and penetration resistance test for concrete methods measure at intervals. These methods can be applied before the end of setting. All these methods do not allow continuous measurements and axe partly destructive In this paper a special pulse-echo technique called "prism technique" is used to evaluate the evolution of proprieties of concrete over time. For that, an automatic system has been developed with LabVIEW program in order to monitor the time of flight of the reflected p-wave. Two mixtures of mortar are made using different proportions, of water, cement, and sand. The mortar is poured into a mould that has a form of a prism. Measurements are taken every 10 minutes over a period of 24 hours. This enabled us to plot the evolution of p-wave velocities over time for the samples and compare the results.
文摘STARS seemed to have aligned perfectly for Chinese company China Wu Yi Co. Ltd. in recent years, At the firm's Kenya Branch office in Nairobi, an eye- catching map hanging on the wall is covered with little red dots. each one representing a project undertaken by the company in the East African country.
文摘By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.
文摘This research investigated the use of wood ash to partially replace cement or sand in conventional concrete, roller compacted concrete (RCC), and flowable fill. The main focus was to determine how the wood ash addition affected the main fresh and hardened properties of these materials. It was found that the wood ash could be successfully incorporated into the conventional concrete. In particular, the wood ash addition not only accelerated the setting, but also improved the early and the 28-day compressive strength of concrete that contained the blast furnace slag. It was also observed that the wood ash could be positively added into RCC to facilitate the compaction and reduce the risk of segregation. In addition, the wood ash can be beneficially introduced into the flowable fill mixtures to facilitate flow, to alleviate bleeding and subsidence, as well as to achieve controlled strength especially when combined with the class C or the class F fly ash.
基金Funded by National Natural Science Foundation of China(Nos.51478200 and 51178202)
文摘Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location.
基金Funded by the National Natural Science Foundation of China(51409202)the Fundamental Research Funds for the Central Universities(2013-IV-36)the Jiangxi Provincial Project of Science and Technology(20132GGB70107)
文摘The primary objective of this research was to determine optimum dosage of mixing concrete containing plasticizers and fly ash, consistent with desirable structural grade concrete properties. Factorial tests were also conducted to investigate the four main factors: water-cementing materials ratio, water content, content of superplasticizers (SP) and fly ash content. It was found that the requirement for setting time played the dominant role in shrinkage and anti-cracking, and fly ash played a critical role in workability and reducing heat of hydration but showed insignificant effects on slump, early strength and initial setting time of concrete.
文摘Based on a large number of orthogonal tests and theoretical analyses, the retarding mortar which meets the requirements of retard-bonded prestressed concrete was prepared. Initial setting time of the retarding mortar may vary from several hours to 15 d at 5 ℃-35 ℃ due to quantities and average curing temperature. And its 28 d compressive strength is above 35 MPa. Thus the influence of quantities on setting time and 28 d compressive strength, and the relationship between setting time and average curing temperature were investigated. The optimum quantities were obtained by studying the interaction of admixtures, and the retarding mechanism was discussed. Based on 52 retard-bonded prestressed strands by manual work from 24 retard-bonded prestressed concrete T-beams, static friction drag, change factor κ and friction factor μ were obtained from the test when retard-bonded prestressed strands were tensioned. Application of the retarding mortar will be vast in practical concrete projects.
文摘Extra-cellular compounds, secreted by microorganisms into their surroundings, can be integrated in concrete composition as admixtures. These substances are important in biofilm formation and some of them can be used as corrosion inhibitor of concrete reinforcement. This paper deals with products made with biological surface active compounds/agents allowing the development of more eco-friendly concrete. The influence of this environmentally friendly bio admixture on setting time, workability, bending and compressive strengths of various mortar based materials made of CEM I, CEM III and CEM V was studied. Mechanical tests were carried out to highlight the influence of admixture in workability and hardening of samples containing the biological product with ratio in the range of 0-2.5%. It was demonstrated that the presence of the new bio-compound admixture in mortar decreases their compressive strength after 28 days of standard curing, in spite of remaining higher than standard minimal strength. Furthermore, Vicat needle experiments have shown a tendency of this admixture to decrease the setting time. A discussion was finally proposed in order to correlate the setting times and the decrease of the mortar compressive strength, corresponding in fact to a hardening delay. This setting time delay could be linked to a delay of the admixtured mortar to increase its resistance. The slump results highlight the action of bio-admixture as a plasticizer on mortars because it increases their workability for a same water-cement ratio. This effect seems variable according to the added amount.
文摘This paper discusses the findings of an experimental study on the effect of various curing procedures on the compressive strength of concrete produced by partially substituting portland cement with Palm Kernel Shell Ash(PKSA).Palm kernel shell ash was utilized in a 1:2:4 mix ratio as a partial substitute for ordinary Portland cement(OPC)at percentage levels of 0%,10%,and 15%.River sand with particles passing a 4.75 mm BS sieve was used,as well as crushed aggregate with a maximum size of 20 mm,and palm kernel shell ash with particles passing a 212μm sieve.The compressive strength of the test cubes(150 mm × 150 mm × 150 mm)was determined after 7,28,and 56 days of curing.The results demonstrated that test cubes containing Palm kernel shell ash developed strength over a longer curing period than ordinary Portland cement concrete samples and that the strength changes depending on the amount of PKSA in the cube samples.The findings showed that at 28 days,test cubes with 5%,10%,and 15%PKSA content in all curing procedures utilized obtained a greater compressive strength.Curing by immersion produced the highest compressive strength in all replacement level while the concrete cured by sprinkling and spraying gives a lower strength in all replacement level.
文摘Due to continuing aging and heavy utilization of many bridges and the limited available funds, the importance of proper bridge condition state assessment has risen recently, which is the crucial point for rational decision-making on MR&R activities. This paper presents a prototype of the concrete bridge condition state assessment system (CBCSAS) with the following sub-modules: inspection, parameter recognition, structural assessment, main cause identification and priority-to-action. And multi-layer neural networks, which may combine with fuzzy set theory or not, are performed to realize the structural assessment with embedding expert knowledge into the assessment system.
基金Project supported by the National Natural Science Foundation of China (No. 51078330)the Natural Science Foundation of Zhejiang Province (No. Y1090610),China
文摘The increase in capacity of displacement piles with time after installation is typically known as soil/pile set-up. A full-scale field test is carried out to observe the set-up effect for open-ended concrete pipe piles jacked into mixed soils. Both the total capacity and the average unit shaft resistance increase approximately linearly with logarithmic time. The average increase rate for unit shaft resistance is 44% per log cycle, while the average increase for total capacity is approximately 21%. A review on case histories for long-term set-up indicates an average set-up rate of approximately 40%. Based on this, the mechanism of pile set-up is discussed in detail and a three-phase model is suggested.