Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical...Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.展开更多
Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity fro...Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity from multiple perspectives,aiding in a multidimensional comprehension of high-temperature superconductivity mechanisms.Drawing inspiration from the block-layer structure models of cuprate superconductors,we computationally investigated the interlayer interaction energies in the 12442-type iron-based superconducting materials AkCa_(2)Fe_(4)As_(4)F_(2)(Ak=K,Rb,Cs)systems based on the block-layer model and explored their relationship with Tc.We observed that an increase in interlayer combinative energy leads to a decrease in Tc,while conversely,a decrease in interlayer combination energy results in an increase in Tc.Further,we found that the contribution of the Fe 3d band structure,especially the 3dz2 orbital,to charge transfer is significant.展开更多
Motivated by the recent discovery of high-temperature superconductivity in bilayer La_(3)Ni_(2)O_(7) under pressure,we study its electronic properties and superconductivity due to strong electron correlation.Using the...Motivated by the recent discovery of high-temperature superconductivity in bilayer La_(3)Ni_(2)O_(7) under pressure,we study its electronic properties and superconductivity due to strong electron correlation.Using the inversion symmetry,we decouple the low-energy electronic structure into block-diagonal symmetric and antisymmetric sectors.It is found that the antisymmetric sector can be reduced to a one-band system near half filling,while the symmetric bands occupied by about two electrons are heavily overdoped individually.Using the strong coupling mean field theory,we obtain strong superconducting pairing with B_(1g)symmetry in the antisymmetric sector.We propose that due to the spin-orbital exchange coupling between the two sectors,B_(1g)pairing is induced in the symmetric bands,which in turn boosts the pairing gap in the antisymmetric band and enhances the high-temperature superconductivity with a congruent d-wave symmetry in pressurized La_(3)Ni_(2)O_(7).展开更多
The discovery of high-temperature superconductivity near 80K in bilayer nickelate La_(3)Ni_(2)O_(7)under high pressures has renewed the exploration of superconducting nickelate in bulk materials.The extension of super...The discovery of high-temperature superconductivity near 80K in bilayer nickelate La_(3)Ni_(2)O_(7)under high pressures has renewed the exploration of superconducting nickelate in bulk materials.The extension of superconductivity in other nickelates in a broader family is also essential.Here,we report the experimental observation of superconducting signature in trilayer nickelate La_(4)Ni_(3)O_(10)under high pressures.By using a modified solgel method and post-annealing treatment under high oxygen pressure,we successfully obtained polycrystalline La_(4)Ni_(3)O_(10)samples with different transport behaviors at ambient pressure.Then we performed high-pressure electrical resistance measurements on these samples in a diamond-anvil-cell apparatus.Surprisingly,the signature of possible superconducting transition with a maximum transition temperature(T_(c))of about 20K under high pressures is observed,as evidenced by a clear drop of resistance and the suppression of resistance drops under magnetic fields.Although the resistance drop is sample-dependent and relatively small,it appears in all of our measured samples.We argue that the observed superconducting signal is most likely to originate from the main phase of La_(4)Ni_(3)O_(10).Our findings will motivate the exploration of superconductivity in a broader family of nickelates and shed light on the understanding of the underlying mechanisms of high-T_(c) superconductivity in nickelates.展开更多
The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic f...The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.展开更多
Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-t...Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.展开更多
A 499.8 MHz SOLEIL-type superconducting cavity was simulated and designed for the first time in this paper.The higher-order mode(HOM)properties of the cavity were investigated.Two kinds of coaxial HOM couplers were de...A 499.8 MHz SOLEIL-type superconducting cavity was simulated and designed for the first time in this paper.The higher-order mode(HOM)properties of the cavity were investigated.Two kinds of coaxial HOM couplers were designed.Using 4 L-type and 4 T-type HOM couplers,the longitudinal impedance and the transverse impedances were suppressed to below 3 kΩand 30 kΩ/m,respectivly.The HOM damping requirements of Hefei Advanced Light Facility(HALF)were satisfied.This paper conducted an in-depth study on the radio frequency(RF)design,multipacting optimization,and thermal analysis of these coaxial couplers.Simulation results indicated that under operating acceleration voltage,the optimized couplers does not exhibit multiplicating or thermal breakdown phenomena.The cavity has the potential to reach a higher acceleration gradient.展开更多
Ru-based superconductor LaRu_(2)As_(2) has been discovered exhibiting the highest critical temperature of ~ 7.8 K among iron-free transition metal pnictides with the ThCr_(2)Si_(2)-type crystal structure. However, mic...Ru-based superconductor LaRu_(2)As_(2) has been discovered exhibiting the highest critical temperature of ~ 7.8 K among iron-free transition metal pnictides with the ThCr_(2)Si_(2)-type crystal structure. However, microscopic research on this novel superconducting material is still lacking. Here, we utilize scanning tunneling microscopy/spectroscopy to uncover the superconductivity and surface structure of LaRu_(2)As_(2). Two distinct terminating surfaces are identified on the cleaved crystals, namely, the As surface and the La surface. Atomic missing line defects are observed on the La surface. Both surfaces exhibit a superconducting gap of ~ 1.0 me V. By employing quasiparticle interference techniques, we observe standing wave patterns near the line defects on the La atomic plane. These patterns are attributed to quasiparticle scattering from two electron type parabolic bands.展开更多
Recent studies have shown that the La-and Y-hydrides can exhibit significant superconducting properties under high pressures.In this paper,we investigate the stability,electronic and superconducting properties of LaYH...Recent studies have shown that the La-and Y-hydrides can exhibit significant superconducting properties under high pressures.In this paper,we investigate the stability,electronic and superconducting properties of LaYH_(x)(x=2,3,6 and 8)under 0-200 GPa.It is found that LaYH_(2) stabilizes in the C2/m phase at ambient pressure,and transforms to the Pmmn phase at 67 GPa.LaYH_(3) stabilizes in the C2/m phase at ambient pressure,and undergoes phase transitions of C2/m→P2_(1)/m→R3m at 12 GPa and 87 GPa,respectively.LaYH_(6) stabilizes in the P4_32_12 phase at ambient pressure,and undergoes phase transitions of P4_(3)2_(1)2→P4/mmm→Cmcm at 28 GPa and 79 GPa,respectively.LaYH_(8) stabilizes in the Imma phase at 60 GPa and transforms to the P4/mmm phase at 117 GPa.Calculations of the electronic band structures show that the P4/mmm-LaYH_(8) and all phases of LaYH_(2) and LaYH_(3) exhibit metallic character.For the metallic phases,we then study their superconducting properties.The calculated superconducting transition temperatures(T_c)are 0.47 K for C2/m-LaYH_(2) at 0 GPa,0 K for C2/m-LaYH_(3) at 0 GPa,and 55.51 K for P4/mmm-LaYH_(8) at 50 GPa.展开更多
Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch ...Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.展开更多
Due to the lack of inversion,mirror or other roto-inversion symmetries,chiral crystals possess a well-defined handedness which,when combined with time-reversal symmetry breaking from the application of magnetic fields...Due to the lack of inversion,mirror or other roto-inversion symmetries,chiral crystals possess a well-defined handedness which,when combined with time-reversal symmetry breaking from the application of magnetic fields,can give rise to directional dichroism of the electrical transport phenomena via the magnetochiral anisotropy.In this study,we investigate the nonreciprocal magneto-transport in microdevices of NbGe_(2),a superconductor with structural chirality.A giant nonreciprocal signal from vortex motions is observed during the superconducting transition,with the ratio of nonreciprocal resistance to the normal resistanceγreaching 6×10^(5)T^(-1)·A^(-1).Interestingly,the intensity can be adjusted and even sign-reversed by varying the current,the temperature,and the crystalline orientation.Our findings illustrate intricate vortex dynamics and offer ways of manipulation on the rectification effect in superconductors with structural chirality.展开更多
Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to t...Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to the localization of all states.This study delves into the intricate interplay between topology and localization within the one-dimensional Su–Schrieffer–Heeger(SSH) model, which incorporates controllable off-diagonal quasi-periodic modulations on superconducting circuits.Through the application of external alternating current(ac) magnetic fluxes, each transmon undergoes controlled driving,enabling independent tuning of all coupling strengths. Within a framework of this model, we construct comprehensive phase diagrams delineating regions characterized by extended topologically nontrivial states, critical localization, and coexisting topological and critical localization phases. The paper also addresses the dynamics of qubit excitations, elucidating distinct quantum state transfers resulting from the intricate interplay between topology and localization. Additionally, we propose a method for detecting diverse quantum phases utilizing existing experimental setups.展开更多
The rattling mode,an anharmonic vibrational phonon,is widely recognized as a critical factor in the emergence of superconductivity in caged materials.Here,we present a counterexample in a filled-skutterudite supercond...The rattling mode,an anharmonic vibrational phonon,is widely recognized as a critical factor in the emergence of superconductivity in caged materials.Here,we present a counterexample in a filled-skutterudite superconductor Ba_(x)Ir_(4)Sb_(12)(x=0.8,0.9,1.0),synthesized via a high-pressure route.Transport measurements down to liquid 3He temperatures reveal a transition temperature(T_(c))of 1.2 K and an upper critical field(H_(c2))of 1.3 T.Unlike other superconductors with caged structures,the Ba_(x)Ir_(4)Sb_(12)(X=P,As,Sb)family exhibits a monotonic decreasing T_(c) with the enhancement of the rattling mode,as indicated by fitting the Bloch–Grüneisen formula.Theoretical analysis suggests that electron doping from Ba transforms the direct bandgap IrSb3 into a metal,with the Fermi surface dominated by the hybridization of Ir 5d and Sb 5p orbitals.Our findings of decoupled rattling modes and superconductivity distinguish the Ba_(x)Ir_(4)Sb_(12) family from other caged superconductors,warranting further exploration into the underlying mechanism.展开更多
High-temperature superconductivity(HTSC)remains one of the most challenging and fascinating mysteries in condensed matter physics.Recently,superconductivity with transition temperature exceeding liquid-nitrogen temper...High-temperature superconductivity(HTSC)remains one of the most challenging and fascinating mysteries in condensed matter physics.Recently,superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La_(3)Ni_(2)O_(7) at high pressure,which provides a new platform to explore the unconventional HTSC.In this work,using high-resolution angle-resolved photoemission spectroscopy and ab initio calculation,we systematically investigate the electronic structures of La_(3)Ni_(2)O_(7) at ambient pressure.Our experiments are in nice agreement with ab initio calculations after considering an orbital-dependent band renormalization effect.The strong electron correlation effect pushes a flat band of d_(z^(2))𝑧2 orbital component below the Fermi level(E_(F)),which is predicted to locate right at E_(F) under high pressure.Moreover,the d_(x^(2)−y^(2)) band shows pseudogap-like behavior with suppressed spectral weight and diminished quasiparticle peak near E_(F).Our findings provide important insights into the electronic structure of La_(3)Ni_(2)O_(7),which will shed light on understanding of the unconventional superconductivity in nickelates.展开更多
The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxi...The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film.With TiN capping layers,no Nb2O5 forms on the surface of the Nb film.The quality factor Qi of the Nb resonator increases from 5.6×10^(5) to 7.9×10^(5) at low input power and from 6.8×10^(6) to 1.1×10^(7)at high input power.Furthermore,the TiN capping layer also shows good aging resistance in Nb resonator devices,with no significant performance fluctuations after one month of aging.These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices.展开更多
TaSe_(3)has garnered significant research interests due to its unique quasi-one-dimensional crystal structure,which gives rise to distinctive properties.Using crystal structure search and first-principles calculations...TaSe_(3)has garnered significant research interests due to its unique quasi-one-dimensional crystal structure,which gives rise to distinctive properties.Using crystal structure search and first-principles calculations,we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe_(3)up to 100 GPa.In addition to the ambient pressure phase(P2_(1)/m-I),we identified three high-pressure phases:P2_(1)/m-II,Pnma,and Pmma.For the P2_(1)/m-I phase,the inclusion of spin-orbit coupling(SOC)results in significant SOC splitting and changes in the band inversion characteristics.Furthermore,band structure calculations for the three high-pressure phases indicate metallic natures,and the electron localization function suggests ionic bonding between Ta and Se atoms.Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa.This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe_(3).展开更多
The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environmen...The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environments that support life and imaging black holes.High-sensitivity superconductor–insulator–superconductor(SIS)mixers are essential detectors for terahertz astronomical telescopes and interferometric arrays.Compared to the commonly used classical Nb/AlO_(x)/Nb superconducting tunnel junction,the Nb/AlN/NbN hybrid superconducting tunnel junction has a higher energy gap voltage and can achieve a higher critical current density.This makes it particularly promising for the development of ultra-wideband,high-sensitivity coherent detectors or mixers in various scientific research fields.In this paper,we present a superconducting SIS mixer based on Nb/AlN/NbN parallel-connected twin junctions(PCTJ),which has a bandwidth extending up to490 GHz–720 GHz.The best achieved double-sideband(DSB)noise temperature(sensitivity)is below three times the quantum noise level.展开更多
We report the physical properties of ThRu_(3)Si_(2)featured with distorted Ru kagome lattice.The combined experiments of resistivity,magnetization and specific heat reveal bulk superconductivity with T_(c)=3.8 K.The s...We report the physical properties of ThRu_(3)Si_(2)featured with distorted Ru kagome lattice.The combined experiments of resistivity,magnetization and specific heat reveal bulk superconductivity with T_(c)=3.8 K.The specific heat jump and calculated electron–phonon coupling indicate a moderate coupled BCS superconductor.In comparison with LaRu_(3)Si_(2),the calculated electronic structure in ThRu_(3)Si_(2)shows an electron-doping effect with electron filling lifted from 100 meV below flat bands to 300 meV above it.This explains the lower superconducting transition temperature and weaker electron correlations observed in ThRu_(3)Si_(2).Our work suggests the Tc and electronic correlations in the kagome superconductor could have an intimate connection with the flat bands.展开更多
Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufact...Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.展开更多
We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used ...We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model,the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory.An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction,while antiferromagnetism accompanies this state.The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase.The A phase is analogous to the pseudogap phase,which shows that electrons go to form pairs but do not cause a supercurrent.We also show the superfluid behavior of the unconventional superconducting state and its critical temperature.It is proven directly that the flat band can effectively raise the critical temperature of superconductivity.It is implementable to simulate and control strongly-correlated electrons'behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures.Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11925304 and 12020101002)the Chinese Academy of Sciences Program(Grant No.GJJSTD20210002).
文摘Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials.
文摘Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity from multiple perspectives,aiding in a multidimensional comprehension of high-temperature superconductivity mechanisms.Drawing inspiration from the block-layer structure models of cuprate superconductors,we computationally investigated the interlayer interaction energies in the 12442-type iron-based superconducting materials AkCa_(2)Fe_(4)As_(4)F_(2)(Ak=K,Rb,Cs)systems based on the block-layer model and explored their relationship with Tc.We observed that an increase in interlayer combinative energy leads to a decrease in Tc,while conversely,a decrease in interlayer combination energy results in an increase in Tc.Further,we found that the contribution of the Fe 3d band structure,especially the 3dz2 orbital,to charge transfer is significant.
基金the National Key R&D Program of China(Grant No.2022YFA1403900)the National Natural Science Foundation of China(Grant Nos.11888101,12174428,and 11920101005)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB28000000 and XDB33000000)the New Cornerstone Investigator Programthe Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.2022YSBR-048)supported by the U.S.Department of Energy,Basic Energy Sciences(Grant No.DE-FG02-99ER45747)。
文摘Motivated by the recent discovery of high-temperature superconductivity in bilayer La_(3)Ni_(2)O_(7) under pressure,we study its electronic properties and superconductivity due to strong electron correlation.Using the inversion symmetry,we decouple the low-energy electronic structure into block-diagonal symmetric and antisymmetric sectors.It is found that the antisymmetric sector can be reduced to a one-band system near half filling,while the symmetric bands occupied by about two electrons are heavily overdoped individually.Using the strong coupling mean field theory,we obtain strong superconducting pairing with B_(1g)symmetry in the antisymmetric sector.We propose that due to the spin-orbital exchange coupling between the two sectors,B_(1g)pairing is induced in the symmetric bands,which in turn boosts the pairing gap in the antisymmetric band and enhances the high-temperature superconductivity with a congruent d-wave symmetry in pressurized La_(3)Ni_(2)O_(7).
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403201)the National Natural Science Foundation of China(Grant Nos.12204231,12061131001,52072170,and 11927809)the Strategic Priority Research Program(B)of Chinese Academy of Sciences(Grant No.XDB25000000).
文摘The discovery of high-temperature superconductivity near 80K in bilayer nickelate La_(3)Ni_(2)O_(7)under high pressures has renewed the exploration of superconducting nickelate in bulk materials.The extension of superconductivity in other nickelates in a broader family is also essential.Here,we report the experimental observation of superconducting signature in trilayer nickelate La_(4)Ni_(3)O_(10)under high pressures.By using a modified solgel method and post-annealing treatment under high oxygen pressure,we successfully obtained polycrystalline La_(4)Ni_(3)O_(10)samples with different transport behaviors at ambient pressure.Then we performed high-pressure electrical resistance measurements on these samples in a diamond-anvil-cell apparatus.Surprisingly,the signature of possible superconducting transition with a maximum transition temperature(T_(c))of about 20K under high pressures is observed,as evidenced by a clear drop of resistance and the suppression of resistance drops under magnetic fields.Although the resistance drop is sample-dependent and relatively small,it appears in all of our measured samples.We argue that the observed superconducting signal is most likely to originate from the main phase of La_(4)Ni_(3)O_(10).Our findings will motivate the exploration of superconductivity in a broader family of nickelates and shed light on the understanding of the underlying mechanisms of high-T_(c) superconductivity in nickelates.
基金This work is funded by the Magnetic Resonance Union of the Chinese Academy of Sciences(Grant No.2021gzl002)the International Partnership Program of Chinese Academy of Sciences(Grant No.182111KYSB20210014)+1 种基金the National Science Foundation of China(Grant No.52293423,Grant No.52277031)the Research and Development of Key Technologies and Equipment for Major Science and Technology Infrastructure of Development and Reform Commission of Shenzhen Municipality,China(Grant No.ZDKJ20190305002).
文摘The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718802 and 2018YFA0209002)the National Natural Science Foundation of China(Grant Nos.62274086,62288101,61971464,62101243,and 11961141002)+3 种基金the Excellent Young Scholar Program of Jiangsu Province,China(Grant Nos.BK20200008 and BK20200060)the Outstanding Postdoctoral Program of Jiangsu Province,Chinathe Fundamental Research Funds for the Central Universitiesthe Fund from Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves。
文摘Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing.
基金supported by the Fundamental Research Funds for the Central Universities(WK2310000098).
文摘A 499.8 MHz SOLEIL-type superconducting cavity was simulated and designed for the first time in this paper.The higher-order mode(HOM)properties of the cavity were investigated.Two kinds of coaxial HOM couplers were designed.Using 4 L-type and 4 T-type HOM couplers,the longitudinal impedance and the transverse impedances were suppressed to below 3 kΩand 30 kΩ/m,respectivly.The HOM damping requirements of Hefei Advanced Light Facility(HALF)were satisfied.This paper conducted an in-depth study on the radio frequency(RF)design,multipacting optimization,and thermal analysis of these coaxial couplers.Simulation results indicated that under operating acceleration voltage,the optimized couplers does not exhibit multiplicating or thermal breakdown phenomena.The cavity has the potential to reach a higher acceleration gradient.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62488201 and 52072401)the National Key R&D Program of China(Grant No.2019YFA0308500)+1 种基金the Chinese Academy of Sciences(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘Ru-based superconductor LaRu_(2)As_(2) has been discovered exhibiting the highest critical temperature of ~ 7.8 K among iron-free transition metal pnictides with the ThCr_(2)Si_(2)-type crystal structure. However, microscopic research on this novel superconducting material is still lacking. Here, we utilize scanning tunneling microscopy/spectroscopy to uncover the superconductivity and surface structure of LaRu_(2)As_(2). Two distinct terminating surfaces are identified on the cleaved crystals, namely, the As surface and the La surface. Atomic missing line defects are observed on the La surface. Both surfaces exhibit a superconducting gap of ~ 1.0 me V. By employing quasiparticle interference techniques, we observe standing wave patterns near the line defects on the La atomic plane. These patterns are attributed to quasiparticle scattering from two electron type parabolic bands.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12364003,11804131,11704163,12375014,and 11875149)the Natural Science Foundation of Jiangxi Province of China (Grant Nos.20232BAB211022 and 20181BAB211007)。
文摘Recent studies have shown that the La-and Y-hydrides can exhibit significant superconducting properties under high pressures.In this paper,we investigate the stability,electronic and superconducting properties of LaYH_(x)(x=2,3,6 and 8)under 0-200 GPa.It is found that LaYH_(2) stabilizes in the C2/m phase at ambient pressure,and transforms to the Pmmn phase at 67 GPa.LaYH_(3) stabilizes in the C2/m phase at ambient pressure,and undergoes phase transitions of C2/m→P2_(1)/m→R3m at 12 GPa and 87 GPa,respectively.LaYH_(6) stabilizes in the P4_32_12 phase at ambient pressure,and undergoes phase transitions of P4_(3)2_(1)2→P4/mmm→Cmcm at 28 GPa and 79 GPa,respectively.LaYH_(8) stabilizes in the Imma phase at 60 GPa and transforms to the P4/mmm phase at 117 GPa.Calculations of the electronic band structures show that the P4/mmm-LaYH_(8) and all phases of LaYH_(2) and LaYH_(3) exhibit metallic character.For the metallic phases,we then study their superconducting properties.The calculated superconducting transition temperatures(T_c)are 0.47 K for C2/m-LaYH_(2) at 0 GPa,0 K for C2/m-LaYH_(3) at 0 GPa,and 55.51 K for P4/mmm-LaYH_(8) at 50 GPa.
基金the National Natural Science Foun-dation of China(Grant Nos.12034018 and 11625419).
文摘Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1403603)the National Natural Science Foundation of China(Grant Nos.U2032213,12104461,12374129,and 12304156)+1 种基金Chinese Academy of Sciences(Grant Nos.YSBR-084,and JZHKYPT-2021-08)A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province.
文摘Due to the lack of inversion,mirror or other roto-inversion symmetries,chiral crystals possess a well-defined handedness which,when combined with time-reversal symmetry breaking from the application of magnetic fields,can give rise to directional dichroism of the electrical transport phenomena via the magnetochiral anisotropy.In this study,we investigate the nonreciprocal magneto-transport in microdevices of NbGe_(2),a superconductor with structural chirality.A giant nonreciprocal signal from vortex motions is observed during the superconducting transition,with the ratio of nonreciprocal resistance to the normal resistanceγreaching 6×10^(5)T^(-1)·A^(-1).Interestingly,the intensity can be adjusted and even sign-reversed by varying the current,the temperature,and the crystalline orientation.Our findings illustrate intricate vortex dynamics and offer ways of manipulation on the rectification effect in superconductors with structural chirality.
基金Project supported by the Natural Science Foundation of Shanxi Province,China (Grant No. 202103021223010)。
文摘Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to the localization of all states.This study delves into the intricate interplay between topology and localization within the one-dimensional Su–Schrieffer–Heeger(SSH) model, which incorporates controllable off-diagonal quasi-periodic modulations on superconducting circuits.Through the application of external alternating current(ac) magnetic fluxes, each transmon undergoes controlled driving,enabling independent tuning of all coupling strengths. Within a framework of this model, we construct comprehensive phase diagrams delineating regions characterized by extended topologically nontrivial states, critical localization, and coexisting topological and critical localization phases. The paper also addresses the dynamics of qubit excitations, elucidating distinct quantum state transfers resulting from the intricate interplay between topology and localization. Additionally, we propose a method for detecting diverse quantum phases utilizing existing experimental setups.
基金supported by Beijing Natural Science Foundation (Grant No.Z200005)the National Key Research and Development Program of China (Grant No.2021YFA1401800)the National Natural Science Foundation of China (Grant Nos.52272267 and 52202342)。
文摘The rattling mode,an anharmonic vibrational phonon,is widely recognized as a critical factor in the emergence of superconductivity in caged materials.Here,we present a counterexample in a filled-skutterudite superconductor Ba_(x)Ir_(4)Sb_(12)(x=0.8,0.9,1.0),synthesized via a high-pressure route.Transport measurements down to liquid 3He temperatures reveal a transition temperature(T_(c))of 1.2 K and an upper critical field(H_(c2))of 1.3 T.Unlike other superconductors with caged structures,the Ba_(x)Ir_(4)Sb_(12)(X=P,As,Sb)family exhibits a monotonic decreasing T_(c) with the enhancement of the rattling mode,as indicated by fitting the Bloch–Grüneisen formula.Theoretical analysis suggests that electron doping from Ba transforms the direct bandgap IrSb3 into a metal,with the Fermi surface dominated by the hybridization of Ir 5d and Sb 5p orbitals.Our findings of decoupled rattling modes and superconductivity distinguish the Ba_(x)Ir_(4)Sb_(12) family from other caged superconductors,warranting further exploration into the underlying mechanism.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1403100 and 2022YFA1403200)the National Natural Science Foundation of China(Grant Nos.12275148,12004270,and 52272265)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515120020)support from Tsinghua University Initiative Scientific Research Program.
文摘High-temperature superconductivity(HTSC)remains one of the most challenging and fascinating mysteries in condensed matter physics.Recently,superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La_(3)Ni_(2)O_(7) at high pressure,which provides a new platform to explore the unconventional HTSC.In this work,using high-resolution angle-resolved photoemission spectroscopy and ab initio calculation,we systematically investigate the electronic structures of La_(3)Ni_(2)O_(7) at ambient pressure.Our experiments are in nice agreement with ab initio calculations after considering an orbital-dependent band renormalization effect.The strong electron correlation effect pushes a flat band of d_(z^(2))𝑧2 orbital component below the Fermi level(E_(F)),which is predicted to locate right at E_(F) under high pressure.Moreover,the d_(x^(2)−y^(2)) band shows pseudogap-like behavior with suppressed spectral weight and diminished quasiparticle peak near E_(F).Our findings provide important insights into the electronic structure of La_(3)Ni_(2)O_(7),which will shed light on understanding of the unconventional superconductivity in nickelates.
基金the National Natural Science Foun-dation of China(Grant Nos.12034018 and 11625419).
文摘The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film.With TiN capping layers,no Nb2O5 forms on the surface of the Nb film.The quality factor Qi of the Nb resonator increases from 5.6×10^(5) to 7.9×10^(5) at low input power and from 6.8×10^(6) to 1.1×10^(7)at high input power.Furthermore,the TiN capping layer also shows good aging resistance in Nb resonator devices,with no significant performance fluctuations after one month of aging.These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.12304022 and 52361035)the Fundamental Research Funds for the Central Universities.The calculations were carried out using supercomputers at the School of Physics at Ningxia University.
文摘TaSe_(3)has garnered significant research interests due to its unique quasi-one-dimensional crystal structure,which gives rise to distinctive properties.Using crystal structure search and first-principles calculations,we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe_(3)up to 100 GPa.In addition to the ambient pressure phase(P2_(1)/m-I),we identified three high-pressure phases:P2_(1)/m-II,Pnma,and Pmma.For the P2_(1)/m-I phase,the inclusion of spin-orbit coupling(SOC)results in significant SOC splitting and changes in the band inversion characteristics.Furthermore,band structure calculations for the three high-pressure phases indicate metallic natures,and the electron localization function suggests ionic bonding between Ta and Se atoms.Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa.This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe_(3).
基金Project supported in part by the National Key Research and Development Program of China(Grant Nos.2023YFA1608201 and 2023YFF0722301)the National Natural Science Foundation of China(Grant Nos.11925304,12020101002,12333013,12273119,and 12103093)supported by grant from the Russian Science Foundation(Grant No.23-7900019)。
文摘The terahertz band,a unique segment of the electromagnetic spectrum,is crucial for observing the cold,dark universe and plays a pivotal role in cutting-edge scientific research,including the study of cosmic environments that support life and imaging black holes.High-sensitivity superconductor–insulator–superconductor(SIS)mixers are essential detectors for terahertz astronomical telescopes and interferometric arrays.Compared to the commonly used classical Nb/AlO_(x)/Nb superconducting tunnel junction,the Nb/AlN/NbN hybrid superconducting tunnel junction has a higher energy gap voltage and can achieve a higher critical current density.This makes it particularly promising for the development of ultra-wideband,high-sensitivity coherent detectors or mixers in various scientific research fields.In this paper,we present a superconducting SIS mixer based on Nb/AlN/NbN parallel-connected twin junctions(PCTJ),which has a bandwidth extending up to490 GHz–720 GHz.The best achieved double-sideband(DSB)noise temperature(sensitivity)is below three times the quantum noise level.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12050003,12004337,and 12274369)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21A040011)。
文摘We report the physical properties of ThRu_(3)Si_(2)featured with distorted Ru kagome lattice.The combined experiments of resistivity,magnetization and specific heat reveal bulk superconductivity with T_(c)=3.8 K.The specific heat jump and calculated electron–phonon coupling indicate a moderate coupled BCS superconductor.In comparison with LaRu_(3)Si_(2),the calculated electronic structure in ThRu_(3)Si_(2)shows an electron-doping effect with electron filling lifted from 100 meV below flat bands to 300 meV above it.This explains the lower superconducting transition temperature and weaker electron correlations observed in ThRu_(3)Si_(2).Our work suggests the Tc and electronic correlations in the kagome superconductor could have an intimate connection with the flat bands.
基金supported in part by the National Key Research and Development Program of China(No.2022YFA1603402)in part by the National Natural Science Foundation of China(No.11875272)。
文摘Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.
基金Project supported by the Natural Science Basic Research Program of Shaanxi(Program Nos.2023KJXX-064 and 2021JQ-748)the National Natural Science Foundation of China(Grant Nos.11804213 and 12174238)Scientific Research Foundation of Shaanxi University of Technology(Grant No.SLGRCQD2006).
文摘We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model,the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory.An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction,while antiferromagnetism accompanies this state.The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase.The A phase is analogous to the pseudogap phase,which shows that electrons go to form pairs but do not cause a supercurrent.We also show the superfluid behavior of the unconventional superconducting state and its critical temperature.It is proven directly that the flat band can effectively raise the critical temperature of superconductivity.It is implementable to simulate and control strongly-correlated electrons'behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures.Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.