期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Interplay between topology and localization on superconducting circuits
1
作者 关欣 霍炳燕 陈刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期240-246,共7页
Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to t... Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to the localization of all states.This study delves into the intricate interplay between topology and localization within the one-dimensional Su–Schrieffer–Heeger(SSH) model, which incorporates controllable off-diagonal quasi-periodic modulations on superconducting circuits.Through the application of external alternating current(ac) magnetic fluxes, each transmon undergoes controlled driving,enabling independent tuning of all coupling strengths. Within a framework of this model, we construct comprehensive phase diagrams delineating regions characterized by extended topologically nontrivial states, critical localization, and coexisting topological and critical localization phases. The paper also addresses the dynamics of qubit excitations, elucidating distinct quantum state transfers resulting from the intricate interplay between topology and localization. Additionally, we propose a method for detecting diverse quantum phases utilizing existing experimental setups. 展开更多
关键词 TOPOLOGY LOCALIZATION superconducting circuits
下载PDF
Characterization of topological phase of superlattices in superconducting circuits
2
作者 陈健菲 吴超华 +1 位作者 樊景涛 陈刚 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期688-694,共7页
The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realize... The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological invariant(winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the investigation of topological quantum phases and topologically protected quantum information processing. 展开更多
关键词 superconducting circuits topological phase transition edge state interface state
下载PDF
Hard-core Hall tube in superconducting circuits
3
作者 关欣 陈刚 +1 位作者 潘婧 桂志国 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期226-233,共8页
The Hall tube as a minimum model to simulate the integer quantum Hall effect is essential for exploring topological physics, while it has not been constructed in the recent developing successfully experiments on super... The Hall tube as a minimum model to simulate the integer quantum Hall effect is essential for exploring topological physics, while it has not been constructed in the recent developing successfully experiments on superconducting circuits.In this work, we propose a feasible experiment scheme using three legs superconducting circuits with transmon qubits to realize a Hall tube. Then we first investigate its topological properties. Since the time–reversal, particle–hole, and chiral symmetries are all broken for the system, the Hall tube belongs to the A class of the Altland–Zirnbauer classification.We obtain the corresponding topological phase transition both numerically and analytically. Since the chirality is a key character of the quantum Hall effect, we secondly investigate the chiral physics in the Hall tube. We find the topological protected chiral edge currents and discuss its robustness. Finally, we give the possible experimental observations of the topological state and topological protected chiral edge currents. 展开更多
关键词 Hall tube superconducting circuits topological phase transition chiral edge currents
下载PDF
Quantum simulation of lattice gauge theories on superconducting circuits:Quantum phase transition and quench dynamics
4
作者 葛自勇 黄瑞珍 +1 位作者 孟子杨 范桁 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期217-222,共6页
Recently,quantum simulation of low-dimensional lattice gauge theories(LGTs)has attracted many interests,which may improve our understanding of strongly correlated quantum many-body systems.Here,we propose an implement... Recently,quantum simulation of low-dimensional lattice gauge theories(LGTs)has attracted many interests,which may improve our understanding of strongly correlated quantum many-body systems.Here,we propose an implementation to approximate Z;LGT on superconducting quantum circuits,where the effective theory is a mixture of a LGT and a gauge-broken term.By using matrix product state based methods,both the ground state properties and quench dynamics are systematically investigated.With an increase of the transverse(electric)field,the system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase.In the ordered phase,an approximate Gauss law of the Z;LGT emerges in the ground state.Moreover,to shed light on the experiments,we also study the quench dynamics,where there is a dynamical signature of the spontaneous translational symmetry breaking.The spreading of the single particle of matter degree is diffusive under the weak transverse field,while it is ballistic with small velocity for the strong field.Furthermore,due to the emergent Gauss law under the strong transverse field,the matter degree can also exhibit confinement dynamics which leads to a strong suppression of the nearest-neighbor hopping.Our results pave the way for simulating the LGT on superconducting circuits,including the quantum phase transition and quench dynamics. 展开更多
关键词 quantum simulation superconducting circuits lattice gauge theories
下载PDF
Nonadiabatic geometric quantum computation with optimal control on superconducting circuits 被引量:7
5
作者 Jing Xu Sai LI +1 位作者 Tao Chen Zheng-Yuan Xue 《Frontiers of physics》 SCIE CSCD 2020年第4期17-24,共8页
Quantum gates,which are the essent ial building blocks of quantum computers,are very fragile.Thus,to realize robust quanturm gates with high fidelity is the ultimate goal of quantum manipulation.Here,we propose a nona... Quantum gates,which are the essent ial building blocks of quantum computers,are very fragile.Thus,to realize robust quanturm gates with high fidelity is the ultimate goal of quantum manipulation.Here,we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates,which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness.Specif-ically,in our proposal,arbitrary geometric single-qubit gates can be realized on a transmon qubit,by a resonant microwave field driving,with both the amplitude and phase of the driving being time-dependent.Meanwhile,nontrivial two-qubit gometric gates can be implemented by two capacitively coupled transmon qubits,with one of the transmon qubits'frequency being modulated to obtain ef-fective resonant coupling between them.Therefore,our scheme provides a promising step towards fault-tolerant solid-state quantum computation. 展开更多
关键词 nonadiabatic geometric quantum computation superconducting circuits optimal control
原文传递
Phase-controlled coherent population trapping in superconducting quantum circuits
6
作者 程广玲 王一平 陈爱喜 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期215-220,共6页
We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a singl... We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single A-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. 展开更多
关键词 coherent population trapping phase control superconducting quantum circuits
下载PDF
Fast and perfect state transfer in superconducting circuit with tunable coupler
7
作者 张驰 王天乐 +5 位作者 赵泽安 杨小燕 郭亮亮 贾志龙 段鹏 郭国平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期247-251,共5页
In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer(QST), an essentia... In quantum computation and quantum information processing, the manipulation and engineering of quantum systems to suit certain purposes are an ongoing task. One such example is quantum state transfer(QST), an essential requirement for both quantum communication and large-scale quantum computation. Here we engineer a chain of four superconducting qubits with tunable couplers to realize the perfect state transfer(PST) protocol originally proposed in quantum spin networks and successfully demonstrate the efficient transfer of an arbitrary single-qubit state from one end of the chain to the other,achieving a high fidelity of 0.986 in just 25 ns. This demonstrated QST is readily to extend to larger chain and multi-node configurations, thus serving as a desirable tool for scalable quantum information processing. 展开更多
关键词 quantum state transfer superconducting circuit tunable coupler
下载PDF
Design and implementation of control system for superconducting RSFQ circuit
8
作者 张阔中 HUANG Junying +3 位作者 ZHANG Hui TANG Guangming ZHANG Zhimin YE Xiaochun 《High Technology Letters》 EI CAS 2023年第4期335-347,共13页
The superconducting rapid single flux quantum(RSFQ)integrated circuit is a promising solu-tion for overcoming speed and power bottlenecks in high-performance computing systems in the post-Moore era.This paper presents... The superconducting rapid single flux quantum(RSFQ)integrated circuit is a promising solu-tion for overcoming speed and power bottlenecks in high-performance computing systems in the post-Moore era.This paper presents an architecture designed to improve the speed and power limitations of high-performance computing systems using superconducting technology.Since superconducting microprocessors,which operate at cryogenic temperatures,require support from semiconductor cir-cuits,the proposed design utilizes the von Neumann architecture with a superconducting RSFQ mi-croprocessor,cryogenic semiconductor memory,a room temperature field programmable gate array(FPGA)controller,and a host computer for input/output.Additionally,the paper introduces two key circuit designs:a start/stop controllable superconducting clock generator and an asynchronous communication interface between the RSFQ and semiconductor chips used to implement the control system.Experimental results demonstrate that the proposed design is feasible and effective,provi-ding valuable insights for future superconducting computer systems. 展开更多
关键词 single flux quantum superconducting rapid single flux quantum(RSFQ)circuit superconducting control system clock generator asynchronous communication interface circuit
下载PDF
Optimize Purcell filter design for reducing influence of fabrication variation
9
作者 蔡晓 周翼彪 +2 位作者 于文龙 熊康林 冯加贵 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期589-594,共6页
To protect superconducting qubits and enable rapid readout, optimally designed Purcell filters are essential. To suppress the off-resonant driving of untargeted readout resonators, individual Purcell filters are used ... To protect superconducting qubits and enable rapid readout, optimally designed Purcell filters are essential. To suppress the off-resonant driving of untargeted readout resonators, individual Purcell filters are used for each readout resonator.However, achieving consistent frequency between a readout resonator and a Purcell filter is a significant challenge. A systematic computational analysis is conducted to investigate how fabrication variation affects filter performance, through focusing on the coupling capacitor structure and coplanar waveguide(CPW) transmission line specifications. The results indicate that the T-type enclosing capacitor(EC), which exhibits lower structural sensitivity, is more advantageous for achieving target capacitance than the C-type EC and the interdigital capacitor(IDC). By utilizing a large-sized CPW with the T-type EC structure, fluctuations in the effective coupling strength can be reduced to 10%, given typical micro-nanofabrication variances. The numerical simulations presented in this work minimize the influence of fabrication deviations, thereby significantly improving the reliability of Purcell filter designs. 展开更多
关键词 superconducting circuit Purcell filter coplanar waveguide capacitor structure
下载PDF
Structure formation of entanglement entropy in a system of two superconducting qubits coupled with an LC-resonator 被引量:1
10
作者 葛国勤 覃翠 +1 位作者 尹淼 黄勇华 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期39-46,共8页
This paper investigates theoretically the evolutions of the entanglement entropy of a system of two coupled-charge- qubits interacting with an LC-resonator. It is found that when the initial states of the two qubits a... This paper investigates theoretically the evolutions of the entanglement entropy of a system of two coupled-charge- qubits interacting with an LC-resonator. It is found that when the initial states of the two qubits are prepared in a given superposition excited state, the evolution of the von Neumann entropy of the system depends significantly on the coupling strength between the two Josephson charge qubits. With the variation of the coupling strength, the evolution of the entanglement entropy of the system forms some structures, especially the periodically bistable properties, which are the first discovered for such a system to our knowledge. It is found that the relative entropy entanglement of the system is also sensitive to the variation of the coupling strength between the two charge qubits, some novel 'collective oscillations' of the relative entropy are found for the system. 展开更多
关键词 superconducting quantum circuits evolutions of entanglement entropy structure forma-tion
下载PDF
Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
11
作者 王帅鹏 陈臻 李铁夫 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期591-595,共5页
Frequency combs are useful in a wide range of applications,such as optical metrology and high-precision spectroscopy.We experimentally study a controllable frequency comb generated in a tunable superconducting coplana... Frequency combs are useful in a wide range of applications,such as optical metrology and high-precision spectroscopy.We experimentally study a controllable frequency comb generated in a tunable superconducting coplanarwaveguide resonator in the microwave regime.A two-tone drive is applied on one of the resonance modes of the resonator and comb generation is observed around the resonance frequency of the resonator.Both central frequency and teeth density of the comb are precisely controllable,and the teeth spacing can be adjusted from Hz to MHz.Moreover,we show that a few hundreds of sidebands can be generated using a sufficiently strong drive power and the weakest drive power needed to generate the comb can be reduced to approach the quantum limit.These experimental results can be qualitatively explained via theoretical analysis. 展开更多
关键词 superconducting circuit SQUID microwave frequency comb
下载PDF
Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
12
作者 董新平 路晓静 +2 位作者 李明 赵正印 冯志波 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期86-91,共6页
Optimal creation of photon Fock states is of importance for quantum information processing and state engineering.Here an efficient strategy is presented for speeding up generation of photon Fock state in a superconduc... Optimal creation of photon Fock states is of importance for quantum information processing and state engineering.Here an efficient strategy is presented for speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving.A transmon qubit is dispersively coupled to a quantized electrical field.We address a ∧-configuration interaction between the composite system and classical drivings.Based on two Gaussian-shaped drivings,a single-photon Fock state can be generated adiabatically.Instead of adding an auxiliary counterdiabatic driving,our concern is to modify these two Rabi drivings in the framework of shortcut to adiabaticity.Thus an accelerated operation with high efficiency can be realized in a much shorter time.Compared with the adiabatic counterpart,the shortcut-based operation is significantly insusceptible to decoherence effects.The scheme could offer a promising way to deterministically prepare photon Fock states with superconducting quantum circuits. 展开更多
关键词 photon Fock state superconducting circuit counterdiabatic driving
下载PDF
Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit
13
作者 郭学仪 邓辉 +6 位作者 李贺康 宋鹏涛 王战 苏鹭红 李洁 金贻荣 郑东宁 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期339-344,共6页
We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude o... We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude of the resonance peak in the energy spectrum of the qubit. In particular, when the amplitude ,λz and the frequency COl of the modulation field meet certain conditions, the resonance peak of the qubit disappears. Using this effect, we further demonstrate that the longitudinal field modulation of the Xmon qubit coupled to a one-dimensional transmission line could be used to dynamically control the transmission of single-photon level coherent resonance microwave. 展开更多
关键词 longitudinal field modulation (LFM) superconducting quantum circuit microwave photonics
下载PDF
The Design of Circuit for Checking Short in HT-7U Superconducting Tokamak Device
14
作者 刘大海 陈灼民 武松涛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第3期323-327,共5页
The tokamak HT-7U project has been funded as a Chinese national project since 1998. The main object of the project is to build a nuclear fusion experimental device with divertor configuration, which is designed by the... The tokamak HT-7U project has been funded as a Chinese national project since 1998. The main object of the project is to build a nuclear fusion experimental device with divertor configuration, which is designed by the Institute of Plasma Physics, the Chinese Academy of Sciences (ASIPP). It is a full superconducting device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coil. During the operation of the device, the operational parameter of device should be checked by technical diagnosis. This paper describes the design of circuit for checldng short between every two parts of the HT7U device. The main contents of design include circuit of data acquisition and data processing of computer. 展开更多
关键词 The Design of Circuit for Checking Short in HT-7U superconducting Tokamak Device
下载PDF
Quantum communication via controlled holes in the statistical distribution of excitations in a nanoresonator coupled to a Cooper pair box
15
作者 C.Valverde A.T.Avelar B.Baseia 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期74-79,共6页
We propose a scheme to transmit information via the statistical distribution of excitations of a nanomechanical resonator. It employs a controllable coupling between this system and a Cooper pair box. The success prob... We propose a scheme to transmit information via the statistical distribution of excitations of a nanomechanical resonator. It employs a controllable coupling between this system and a Cooper pair box. The success probability and the fidelity are calculated and compared with those obtained in an atom-field system in different regimes. Addtionaly, the scheme can also be applied to prepare low excited Fock states. 展开更多
关键词 quantum communication quantum state engineering superconducting circuits nanome- chanical resonator
下载PDF
Speeding up transmissions of unknown quantum information along Ising-type quantum channels
16
作者 郭伟杰 韦联福 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期125-130,共6页
Quantum teleportation with entanglement channels and a series of two-qubit SWAP gates between the nearestneighbor qubits are usually utilized to achieve the transfers of unknown quantum state from the sender to the di... Quantum teleportation with entanglement channels and a series of two-qubit SWAP gates between the nearestneighbor qubits are usually utilized to achieve the transfers of unknown quantum state from the sender to the distant receiver. In this paper, by simplifying the usual SWAP gates we propose an approach to speed up the transmissions of unknown quantum information, specifically including the single-qubit unknown state and two-qubit unknown entangled ones,by a series of entangling and disentangling operations between the remote qubits with distant interactions. The generic proposal is demonstrated specifically with experimentally-existing Ising-type quantum channels without transverse interaction; liquid NMR-molecules driven by global radio frequency electromagnetic pulses and capacitively-coupled Josephson circuits driven by local microwave pulses. The proposal should be particularly useful to set up the connections between the distant qubits in a chip of quantum computing. 展开更多
关键词 unknown quantum information transfers Ising-type quantum chains NMR molecules superconducting circuits
下载PDF
Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices
17
作者 Wei Feng Dexi Shao +3 位作者 Guo-Qiang Zhang Qi-Ping Su Jun-Xiang Zhang Chui-Ping Yang 《Frontiers of physics》 SCIE CSCD 2023年第6期283-290,共8页
Motivated by recent realizations of two-dimensional(2D)superconducting-qubit lattices,we propose a protocol to simulate Hofstadter butterfly with synthetic gauge fields in superconducting circuits.Based on the existin... Motivated by recent realizations of two-dimensional(2D)superconducting-qubit lattices,we propose a protocol to simulate Hofstadter butterfly with synthetic gauge fields in superconducting circuits.Based on the existing 2D superconducting-qubit lattices,we construct a generalized Hofstadter model on zigzag lattices,which has a fractal energy spectrum similar to the original Hofstadter butterfly.By periodically modulating the resonant frequencies of qubits,we engineer a synthetic gauge field to mimic the generalized Hofstadter Hamiltonian.A spectroscopic method is used to demonstrate the Hofstadter butterfly from the time evolutions of experimental observables.We numerically simulate the dynamics of the system with realistic parameters,and the results show a butterfly spectrum clearly.Our proposal provides a promising way to realize the Hofstadter butterfly on the latest 2D superconducting-qubit lattices and will stimulate the quantum simulation of novel properties induced by magnetic fields in superconducting circuits. 展开更多
关键词 quantum simulation superconducting circuits superconducting qubit quantum computation
原文传递
Bosonic quantum error correction codes in superconducting quantum circuits 被引量:6
18
作者 Weizhou Cai Yuwei Ma +2 位作者 Weiting Wang Chang-Ling Zou Luyan Sun 《Fundamental Research》 CAS 2021年第1期50-67,共18页
Quantum information is vulnerable to environmental noise and experimental imperfections,hindering the reli-ability of practical quantum information processors.Therefore,quantum error correction(QEC)that can pro-tect q... Quantum information is vulnerable to environmental noise and experimental imperfections,hindering the reli-ability of practical quantum information processors.Therefore,quantum error correction(QEC)that can pro-tect quantum information against noise is vital for universal and scalable quantum computation.Among many different experimental platforms,superconducting quantum circuits and bosonic encodings in superconducting microwave modes are appealing for their unprecedented potential in QEC.During the last few years,bosonic QEC is demonstrated to reach the break-even point,i.e.the lifetime of a logical qubit is enhanced to exceed that of any individual components composing the experimental system.Beyond that,universal gate sets and fault-tolerant operations on the bosonic codes are also realized,pushing quantum information processing towards the QEC era.In this article,we review the recent progress of the bosonic codes,including the Gottesman-Kitaev-Preskill codes,cat codes,and binomial codes,and discuss the opportunities of bosonic codes in various quantum applications,ranging from fault-tolerant quantum computation to quantum metrology.We also summarize the challenges associated with the bosonic codes and provide an outlook for the potential research directions in the long terms. 展开更多
关键词 Quantum error correction Bosonic codes superconducting quantum circuits Quantum communication Quantum simulation Quantum metrology
原文传递
Design of a gap tunable flux qubit with FastHenry 被引量:1
19
作者 Naheed Akhtar 郑亚锐 +4 位作者 Mudassar Nazir 吴玉林 邓辉 郑东宁 朱晓波 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期179-182,共4页
In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit co... In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit coherence properties. One of the most important circuit parameters, which needs to be carefully designed, is the mutual inductance among different parts of a superconducting circuit. In this paper we demonstrate how to design a gap-tunable flux qubit by layout design and inductance extraction using a fast field solver FastHenry. The energy spectrum of the gap-tunable flux qubit shows that the measured parameters are close to the design values. 展开更多
关键词 superconducting circuit Josephson junction flux qubit FastHenry
下载PDF
Controlling group velocity in a superconductive quantum circuit
20
作者 邱田会 杨国建 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期274-278,共5页
We investigate the controllable group velocity of a microwave probe field in a superconductive quantum circuit(SQC) pumped by microwave fields,and the use of such a SQC function as an artificial Λ-type three-level ... We investigate the controllable group velocity of a microwave probe field in a superconductive quantum circuit(SQC) pumped by microwave fields,and the use of such a SQC function as an artificial Λ-type three-level atom.The exchange between the subluminal and the superluminal states of the probe field can be realized simply by sweeping the pumping intensity,and the superluminal state is usually realized with a lower absorption.This work is one of the efforts to extend the study of electromagnetically induced transparency and its related properties from the lightwave band to the microwave band. 展开更多
关键词 SUBLUMINAL SUPERLUMINAL superconductive quantum circuit group velocity
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部