Superconducting transmon qubits are the leading platform in solid-state quantum computing and quantum simulation applications.In this work,we develop a fabrication process for the transmon multiqubit device with a nio...Superconducting transmon qubits are the leading platform in solid-state quantum computing and quantum simulation applications.In this work,we develop a fabrication process for the transmon multiqubit device with a niobium base layer,shadow-evaporated Josephson junctions,and airbridges across the qubit control lines to suppress crosstalk.Our results show that these multiqubit devices have well-characterized readout resonators,and that the energy relaxation and Ramsey(spin-echo)dephasing times are up to∼40µs and 14(47)µs,respectively.We perform single-qubit gate operations that demonstrate a maximum gate fidelity of 99.97%.In addition,two-qubit vacuum Rabi oscillations are measured to evaluate the coupling strength between qubits,and the crosstalk among qubits is found to be less than 1%with the fabricated airbridges.Further improvements in qubit coherence performance using this fabrication process are also discussed.展开更多
A quantum algorithm provides a new way in solving certain computing problems and usually faster than classical algorithms. Here we report an implementation of a quantum algorithm to determine the parity of permutation...A quantum algorithm provides a new way in solving certain computing problems and usually faster than classical algorithms. Here we report an implementation of a quantum algorithm to determine the parity of permutation in a single three-dimensional(3D) superconducting transmon qutrit system. The experiment shows the capacity to speed up in a qutrit,which can also be extended to a multi-level system for solving high-dimensional permutation parity determination problem.展开更多
Superconducting quantum bits (qubits) and circuits are the leading candidate for the implementation of solid-state quantum computation. They have also been widely used in a variety of studies of quantum physics, ato...Superconducting quantum bits (qubits) and circuits are the leading candidate for the implementation of solid-state quantum computation. They have also been widely used in a variety of studies of quantum physics, atomic physics, quantum optics, and quantum simulation. In this article, we will present an overview of the basic principles of the superconducting qubits, including the phase, flux, charge, and transmon (Xmon) qubits, and the progress achieved so far concerning the improvements of the device design and quantum coherence property. Experimental studies in various research fields using the superconducting qubits and circuits will be briefly reviewed.展开更多
An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitra...An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.展开更多
Based on superconducting charge qubits (SCCQs) coupled to a single-mode microwave cavity, we propose a scheme for generating charge cluster states. For all SCCQs, the controlled gate voltages are all in their degene...Based on superconducting charge qubits (SCCQs) coupled to a single-mode microwave cavity, we propose a scheme for generating charge cluster states. For all SCCQs, the controlled gate voltages are all in their degeneracy points, the quantum information is encoded in two logic states of charge basis. The generation of the multi-qubit cluster state can be achieved step by step on a pair of nearest-neighbor qubits. Considering effective long-rang coupling, we provide an efficient way to one-step generating of a highly entangled cluster state, in which the qubit-qubit coupling is mediated by the cavity mode. Our quantum operations are insensitive to the initial state of the cavity mode by removing the influence of the cavity mode via the periodical evolution of the system. Thus, our operation may be against the decoherence from the cavity.展开更多
We propose a scheme for realizing the 1 → 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this sch...We propose a scheme for realizing the 1 → 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this scheme, in order to implement UQCM, we only need phase shift gate operation on SQUID qubits and the Raman transitions. The cavity number we need is only one. Thus our scheme is simple and has advantages in the experimental realization. Furthermore, both the cavity and the SQUID qubits are virtually excited, so the decoherence can be neglected.展开更多
To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconduct...To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1,which has 66 qubits in a two-dimensional array in a tunable coupler architecture.The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%.The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling,with a system scale of up to 60 qubits and 24 cycles,and fidelity of FXEB=(3·66±0·345)×10^(-4).The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore[Nature 574,505(2019)]in the classic simulation,and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0[arXiv:2106.14734(2021)].The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years(about 4·8×104years),while Zuchongzhi 2.1 only takes about 4.2 h,thereby significantly enhancing the quantum computational advantage.展开更多
基金supported by the National Key R&D Program of China(Grant No.2016YFA0300601)the National Natural Science Foundation of China(Grant Nos.11934018 and 11874063)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)the Key-Area Research and Development Program of GuangDong Province,China(Grant No.2018B030326001)。
文摘Superconducting transmon qubits are the leading platform in solid-state quantum computing and quantum simulation applications.In this work,we develop a fabrication process for the transmon multiqubit device with a niobium base layer,shadow-evaporated Josephson junctions,and airbridges across the qubit control lines to suppress crosstalk.Our results show that these multiqubit devices have well-characterized readout resonators,and that the energy relaxation and Ramsey(spin-echo)dephasing times are up to∼40µs and 14(47)µs,respectively.We perform single-qubit gate operations that demonstrate a maximum gate fidelity of 99.97%.In addition,two-qubit vacuum Rabi oscillations are measured to evaluate the coupling strength between qubits,and the crosstalk among qubits is found to be less than 1%with the fabricated airbridges.Further improvements in qubit coherence performance using this fabrication process are also discussed.
基金supported by the National Key Basic Research and Development Program of China(Grant No.2016YFA0301802)the National Natural Science Foundation of China(Grant Nos.11504165,11474152,and 61521001)
文摘A quantum algorithm provides a new way in solving certain computing problems and usually faster than classical algorithms. Here we report an implementation of a quantum algorithm to determine the parity of permutation in a single three-dimensional(3D) superconducting transmon qutrit system. The experiment shows the capacity to speed up in a qutrit,which can also be extended to a multi-level system for solving high-dimensional permutation parity determination problem.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91321208 and 11674380)the National Key Basic Research Program of the Ministry of Science and Technology of China(Grant Nos.2014CB921202,2015CB921104,and 2016YFA0300601)
文摘Superconducting quantum bits (qubits) and circuits are the leading candidate for the implementation of solid-state quantum computation. They have also been widely used in a variety of studies of quantum physics, atomic physics, quantum optics, and quantum simulation. In this article, we will present an overview of the basic principles of the superconducting qubits, including the phase, flux, charge, and transmon (Xmon) qubits, and the progress achieved so far concerning the improvements of the device design and quantum coherence property. Experimental studies in various research fields using the superconducting qubits and circuits will be briefly reviewed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60678022 and 10704001, the Specialized Research Pund for the Doctoral Program of Higher Education under Grant No 20060357008, the Key Program of the Education Department of Anhui Province under Grant Nos KJ2009A048Z, the Talent Project of the Anhui Province for Outstanding Youth under Grant Nos 2010SQRL153ZD and 2010SQRL187.
文摘An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.
基金Supported by the National Natural Science Foundation of China under Grant No 10574126, the Hunan Provincial Natural Science Foundation under Grant No 06jj50014 and Key Foundation of the Education Commission of Hunan Province under Grant No 06A055.
文摘Based on superconducting charge qubits (SCCQs) coupled to a single-mode microwave cavity, we propose a scheme for generating charge cluster states. For all SCCQs, the controlled gate voltages are all in their degeneracy points, the quantum information is encoded in two logic states of charge basis. The generation of the multi-qubit cluster state can be achieved step by step on a pair of nearest-neighbor qubits. Considering effective long-rang coupling, we provide an efficient way to one-step generating of a highly entangled cluster state, in which the qubit-qubit coupling is mediated by the cavity mode. Our quantum operations are insensitive to the initial state of the cavity mode by removing the influence of the cavity mode via the periodical evolution of the system. Thus, our operation may be against the decoherence from the cavity.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60978009 and 60578055, and by the National Basic Research Program of China under Grant Nos 2009CB929604 and 2007CB925204.
文摘We propose a scheme for realizing the 1 → 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this scheme, in order to implement UQCM, we only need phase shift gate operation on SQUID qubits and the Raman transitions. The cavity number we need is only one. Thus our scheme is simple and has advantages in the experimental realization. Furthermore, both the cavity and the SQUID qubits are virtually excited, so the decoherence can be neglected.
基金the National Key R&D Program of China(2017YFA0304300),the Chinese Academy of Sciences,Anhui Initiative in Quantum Information Technologies,Technology Committee of Shanghai Municipality,National Natural Science Foundation of China(11905217,11774326,and 11905294)‘Shang-hai Municipal Science and Technology Major Project(2019SHZDZX01)’Natural Science Foundation of Shanghai(19ZR1462700)‘Key-Area Research and Development Program of Guangdong Province(2020B0303030001)’the Youth Talent Lifting Project(2020-JCJQ-QT-030)。
文摘To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1,which has 66 qubits in a two-dimensional array in a tunable coupler architecture.The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%.The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling,with a system scale of up to 60 qubits and 24 cycles,and fidelity of FXEB=(3·66±0·345)×10^(-4).The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore[Nature 574,505(2019)]in the classic simulation,and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0[arXiv:2106.14734(2021)].The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years(about 4·8×104years),while Zuchongzhi 2.1 only takes about 4.2 h,thereby significantly enhancing the quantum computational advantage.