In DC micro grids and networks,DC-DC power converters having a large number of semiconductor-based power electronic devices are usually adopted to interconnect the renewable sources and flexible loads.Most of the semi...In DC micro grids and networks,DC-DC power converters having a large number of semiconductor-based power electronic devices are usually adopted to interconnect the renewable sources and flexible loads.Most of the semiconductor-based devices suffer from poor fault withstanding abilities,but conventional power electronic protection schemes have the bottlenecks of the time-delay,self-malfunction and mis-judgement.This paper presents a novel solution using the superconducting fault current limiter(SFCL)to protect a power electronic device and extend the usage to a micro grid.This SFCL is actually a self-triggering,recoverable,and passive current limiter,which does not involve any additional circuit hardware and software.Experimental investigations and simulation analyses clarify the feasibility of using this superconductor-based protection scheme to implement the self-acting fail-safe protection of DC-DC converters.Further system-level simulations explore the SFCL to suppress the over-current and stabilize the bus voltage of a photovoltaic based DC micro grid,particularly facing millisecond-level transients and faults.Our experimental and theoretical investigations lay some technical bases to establish a superconductor-semiconductor-coupled interdisciplinary application from the view from the applied superconductivity,to power electronics,and to micro grids.展开更多
The design progress of superconducting fault current limiter(SFCL)for transmission voltage is presented,with a focus on the results of recent key experiments that have led to a state‐of‐the‐art high‐voltage high‐...The design progress of superconducting fault current limiter(SFCL)for transmission voltage is presented,with a focus on the results of recent key experiments that have led to a state‐of‐the‐art high‐voltage high‐capacity super‐conducting current limiting techniques:the resistive alternating current(AC)SFCL,saturated iron cores AC SFCL,and resistive direct current(DC)SFCL.The main driving factors for designing SFCL in these projects are the preparation of high‐performance superconducting materials,the development of large‐scale superconducting current limiting winding,system testing,and operation technology.Based on the authors’experience with both AC and DC SFCLs,this paper focuses on the main design aspects of resistive SFCL at transmission voltage.The relationship between the hot spot caused by the inhomogeneity of long superconducting tape and the overall parameter selection is presented.In addition,the thermal calculation based on the current limiting resistance and a real‐time current curve is also proposed for the parameter design of the current limiting winding.展开更多
---For a saturated iron core fault current limiter, superconductor is the only suitable material to make the dc bias coil, especially when the device is used in a high voltage power grid. Commonly, superconducting wir...---For a saturated iron core fault current limiter, superconductor is the only suitable material to make the dc bias coil, especially when the device is used in a high voltage power grid. Commonly, superconducting wires are used to wind the dc bias coil Since the performance of the wires changes greatly under magnetic fields, the calculation of the field spatial distraction is essential to the optimization of the superconducting magnet. A superconducting coil with 141000 ampere-turns magnetizing capacity made of 17600 meters of BSCCO 2223 HTS tapes was fabricated. This coil was built for a 35 kV/90 MVA saturated iron-core fault current limiter. Computer simulations on magnetic field distribution were carried out to optimize the structural design, and experiments were done to verify the performance of the coil The configuration and the key parameters of the coil will be reported in this paper.展开更多
The active saturated iron-core superconductive fault current limiter(SISFCL)is a good choice to decrease fault current.This paper introduced the principles and impedance characteristic of the active SISFCL.Then,it sho...The active saturated iron-core superconductive fault current limiter(SISFCL)is a good choice to decrease fault current.This paper introduced the principles and impedance characteristic of the active SISFCL.Then,it shows the current-limiting effects of the SISFCL.Besides,the impact of the active SISFCL on the distance protection of the EHV transmission line is evaluated.Based on that,the coordination scheme of the distance protections is proposed.A 500 kV double-circuit transmission system with SISFCLs is simulated by Electro-Magnetic Transients Program including DC(EMTDC).Simulation tests demonstrate the correctness and validity of theoretical analyses.展开更多
基金the National Natural Science Foundation of China[Grant No.51807128].
文摘In DC micro grids and networks,DC-DC power converters having a large number of semiconductor-based power electronic devices are usually adopted to interconnect the renewable sources and flexible loads.Most of the semiconductor-based devices suffer from poor fault withstanding abilities,but conventional power electronic protection schemes have the bottlenecks of the time-delay,self-malfunction and mis-judgement.This paper presents a novel solution using the superconducting fault current limiter(SFCL)to protect a power electronic device and extend the usage to a micro grid.This SFCL is actually a self-triggering,recoverable,and passive current limiter,which does not involve any additional circuit hardware and software.Experimental investigations and simulation analyses clarify the feasibility of using this superconductor-based protection scheme to implement the self-acting fail-safe protection of DC-DC converters.Further system-level simulations explore the SFCL to suppress the over-current and stabilize the bus voltage of a photovoltaic based DC micro grid,particularly facing millisecond-level transients and faults.Our experimental and theoretical investigations lay some technical bases to establish a superconductor-semiconductor-coupled interdisciplinary application from the view from the applied superconductivity,to power electronics,and to micro grids.
基金supported in part by the National Key Research and Development Program under Grant 2017YFB0902300。
文摘The design progress of superconducting fault current limiter(SFCL)for transmission voltage is presented,with a focus on the results of recent key experiments that have led to a state‐of‐the‐art high‐voltage high‐capacity super‐conducting current limiting techniques:the resistive alternating current(AC)SFCL,saturated iron cores AC SFCL,and resistive direct current(DC)SFCL.The main driving factors for designing SFCL in these projects are the preparation of high‐performance superconducting materials,the development of large‐scale superconducting current limiting winding,system testing,and operation technology.Based on the authors’experience with both AC and DC SFCLs,this paper focuses on the main design aspects of resistive SFCL at transmission voltage.The relationship between the hot spot caused by the inhomogeneity of long superconducting tape and the overall parameter selection is presented.In addition,the thermal calculation based on the current limiting resistance and a real‐time current curve is also proposed for the parameter design of the current limiting winding.
基金This work was supported by the Chinese Ministry of Science and Technology under Grant No. 2006AA03Z234Tianjin Municipal Science and Technology Commission under Grant No. 05FZZDGX00700Yunnan Provincial Science and Technology Department under Grant No. 2005GG07.
文摘---For a saturated iron core fault current limiter, superconductor is the only suitable material to make the dc bias coil, especially when the device is used in a high voltage power grid. Commonly, superconducting wires are used to wind the dc bias coil Since the performance of the wires changes greatly under magnetic fields, the calculation of the field spatial distraction is essential to the optimization of the superconducting magnet. A superconducting coil with 141000 ampere-turns magnetizing capacity made of 17600 meters of BSCCO 2223 HTS tapes was fabricated. This coil was built for a 35 kV/90 MVA saturated iron-core fault current limiter. Computer simulations on magnetic field distribution were carried out to optimize the structural design, and experiments were done to verify the performance of the coil The configuration and the key parameters of the coil will be reported in this paper.
文摘The active saturated iron-core superconductive fault current limiter(SISFCL)is a good choice to decrease fault current.This paper introduced the principles and impedance characteristic of the active SISFCL.Then,it shows the current-limiting effects of the SISFCL.Besides,the impact of the active SISFCL on the distance protection of the EHV transmission line is evaluated.Based on that,the coordination scheme of the distance protections is proposed.A 500 kV double-circuit transmission system with SISFCLs is simulated by Electro-Magnetic Transients Program including DC(EMTDC).Simulation tests demonstrate the correctness and validity of theoretical analyses.