A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient volt...A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.展开更多
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe...An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.展开更多
Unpredictable power fluctuation and fault ridethrough capability attract increased attention as two uncertain major factors in doubly-fed induction generators(DFIGs)integrated DC power system.Present solutions usually...Unpredictable power fluctuation and fault ridethrough capability attract increased attention as two uncertain major factors in doubly-fed induction generators(DFIGs)integrated DC power system.Present solutions usually require complicated cooperation comprising multiple modules of energy storage,current control,and voltage stabilizer.To overcome the drawbacks of existing solutions,this paper proposes a superconducting magnetic energy storage(SMES)integrated currentsource DC/DC converter(CSDC).It is mainly composed of a current-source back-to-back converter,and the SMES is tactfully embedded in series with the intermediate DC link.The proposed SMES-CSDC is installed in front of the DC-DFIG to carry out its dual abilities of load voltage stabilization under multifarious transient disturbances and power regulation under wind speed variations.Compared with the existing DC protection devices,the SMES-CSDC is designed on the basis of unique current-type energy storage.It has the advantages of fast response,extensive compensation range,concise hardware structure,and straightforward control strategy.The feasibility of the SMESCSDC is implemented via a scaled-down experiment,and its effectiveness for DC-DFIG protection is verified by a large-scale DC power system simulation.展开更多
A method is described for creating a measurable unbalanced gravitational acceleration using a gravitomagnetic field surrounding a superconducting toroid as described by Forward (1962). An experimental Superconducting ...A method is described for creating a measurable unbalanced gravitational acceleration using a gravitomagnetic field surrounding a superconducting toroid as described by Forward (1962). An experimental Superconducting Magnetic Energy Storage (SMES) toroid configuration of wound superconducting nanowire is proposed to create a measurable acceleration field along the axis of symmetry, providing experimental confirmation of the additive nature of a Lense-Thirring derived gravitomagnetic field. In the present paper, gravitational coupling enhancement of this effect is explored using a high index or high permittivity material, as predicted by Sarfatti (2020) using his modification to Einstein’s General Relativity Field Equations for gravitational coupling in matter.展开更多
The fast-response feature from a superconducting magnetic energy storage(SMES)device is favored for suppressing instantaneous voltage and power fluctuations,but the SMES coil is much more expensive than a conventional...The fast-response feature from a superconducting magnetic energy storage(SMES)device is favored for suppressing instantaneous voltage and power fluctuations,but the SMES coil is much more expensive than a conventional battery energy storage device.In order to improve the energy utilization rate and reduce the energy storage cost under multiple-line power distribution conditions,this paper investigates a new interline DC dynamic voltage restorer(IDC-DVR)scheme with one SMES coil shared among multiple compensating circuits.In this new concept,an improved current-voltage(I/V)chopper assembly,which has a series of input/output power ports,is introduced to connect the single SMES coil with multiple power lines,and thereby satisfy the independent energy exchange requirements of any line to be compensated.Specifically,if two or more power lines have simultaneous compensating demands,the SMES coil can be selectively controlled to compensate the preferable line according to the priority order of the line.The feasibility of the proposed scheme is technically verified to maintain the transient voltage stability in multiple-line voltage swell and sag cases caused by either output voltage fluctuations from external power sources or power demand fluctuations from local sensitive loads.The simulation results provide a technical basis to develop a cost-effective SMES-based IDC-DVR for use in various DC distribution networks.展开更多
Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),f...Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),for its dynamic characteristic, is very efficient for rapid exchange of electrical power with grid during small and large disturbances to address those instabilities.In addition,SMES plays an important role in integrating renewable sources such as wind generators to power grid by controlling output power of wind plant and improving the stability of power system.Efficient application of SMES in various power system operations depends on the proper location in the power system, exact energy and power ratings and appropriate controllers. In this paper, an effort is given to explain SMES device and its controllability to mitigate the stability of power grid integrated with wind power generation systems.展开更多
为了提高风电并网系统暂态功角稳定性,以双馈风力发电机(doubly fed induction generator, DFIG)并联超导储能(superconducting magnetic energy storage, SMES)装置为研究对象,提出了一种联合SMES-DFIG的控制方法。通过风电场接入对系...为了提高风电并网系统暂态功角稳定性,以双馈风力发电机(doubly fed induction generator, DFIG)并联超导储能(superconducting magnetic energy storage, SMES)装置为研究对象,提出了一种联合SMES-DFIG的控制方法。通过风电场接入对系统节点导纳矩阵的修正和收缩处理,并基于拓展等面积等则,依据接入DFIG的网络拓扑和暂态期间系统等值功角变化的信息,分析系统等值机械功率改变量的增减性质对系统功角的影响关系,对与DFIG并联的SMES给出了提高系统暂态功角稳定性的功率输出综合控制规律,并对控制策略的有效性进行了仿真验证。研究结果表明,合理准确地控制SMES的功率输出可以改善系统等值功角的变化,加快系统稳定的恢复速度,该研究结果可为利用SMES提高多机系统暂态稳定性的控制提供参考。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51307124)the Major Program of the National Natural Science Foundation of China(Grant No.51190105)
文摘A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.
基金This research was funded by the Deputyship for Research and Innovation,Ministry of Education,Saudi Arabia,through the University of Tabuk,Grant Number S-1443-0123.
文摘An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.
基金supported by the National Natural Science Foundation of China(No.51807128)。
文摘Unpredictable power fluctuation and fault ridethrough capability attract increased attention as two uncertain major factors in doubly-fed induction generators(DFIGs)integrated DC power system.Present solutions usually require complicated cooperation comprising multiple modules of energy storage,current control,and voltage stabilizer.To overcome the drawbacks of existing solutions,this paper proposes a superconducting magnetic energy storage(SMES)integrated currentsource DC/DC converter(CSDC).It is mainly composed of a current-source back-to-back converter,and the SMES is tactfully embedded in series with the intermediate DC link.The proposed SMES-CSDC is installed in front of the DC-DFIG to carry out its dual abilities of load voltage stabilization under multifarious transient disturbances and power regulation under wind speed variations.Compared with the existing DC protection devices,the SMES-CSDC is designed on the basis of unique current-type energy storage.It has the advantages of fast response,extensive compensation range,concise hardware structure,and straightforward control strategy.The feasibility of the SMESCSDC is implemented via a scaled-down experiment,and its effectiveness for DC-DFIG protection is verified by a large-scale DC power system simulation.
文摘A method is described for creating a measurable unbalanced gravitational acceleration using a gravitomagnetic field surrounding a superconducting toroid as described by Forward (1962). An experimental Superconducting Magnetic Energy Storage (SMES) toroid configuration of wound superconducting nanowire is proposed to create a measurable acceleration field along the axis of symmetry, providing experimental confirmation of the additive nature of a Lense-Thirring derived gravitomagnetic field. In the present paper, gravitational coupling enhancement of this effect is explored using a high index or high permittivity material, as predicted by Sarfatti (2020) using his modification to Einstein’s General Relativity Field Equations for gravitational coupling in matter.
基金This work was supported in part by the National Natural Science Foundation of China under Grant No.51807128State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No.LAPS20017.
文摘The fast-response feature from a superconducting magnetic energy storage(SMES)device is favored for suppressing instantaneous voltage and power fluctuations,but the SMES coil is much more expensive than a conventional battery energy storage device.In order to improve the energy utilization rate and reduce the energy storage cost under multiple-line power distribution conditions,this paper investigates a new interline DC dynamic voltage restorer(IDC-DVR)scheme with one SMES coil shared among multiple compensating circuits.In this new concept,an improved current-voltage(I/V)chopper assembly,which has a series of input/output power ports,is introduced to connect the single SMES coil with multiple power lines,and thereby satisfy the independent energy exchange requirements of any line to be compensated.Specifically,if two or more power lines have simultaneous compensating demands,the SMES coil can be selectively controlled to compensate the preferable line according to the priority order of the line.The feasibility of the proposed scheme is technically verified to maintain the transient voltage stability in multiple-line voltage swell and sag cases caused by either output voltage fluctuations from external power sources or power demand fluctuations from local sensitive loads.The simulation results provide a technical basis to develop a cost-effective SMES-based IDC-DVR for use in various DC distribution networks.
文摘Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),for its dynamic characteristic, is very efficient for rapid exchange of electrical power with grid during small and large disturbances to address those instabilities.In addition,SMES plays an important role in integrating renewable sources such as wind generators to power grid by controlling output power of wind plant and improving the stability of power system.Efficient application of SMES in various power system operations depends on the proper location in the power system, exact energy and power ratings and appropriate controllers. In this paper, an effort is given to explain SMES device and its controllability to mitigate the stability of power grid integrated with wind power generation systems.
文摘为了提高风电并网系统暂态功角稳定性,以双馈风力发电机(doubly fed induction generator, DFIG)并联超导储能(superconducting magnetic energy storage, SMES)装置为研究对象,提出了一种联合SMES-DFIG的控制方法。通过风电场接入对系统节点导纳矩阵的修正和收缩处理,并基于拓展等面积等则,依据接入DFIG的网络拓扑和暂态期间系统等值功角变化的信息,分析系统等值机械功率改变量的增减性质对系统功角的影响关系,对与DFIG并联的SMES给出了提高系统暂态功角稳定性的功率输出综合控制规律,并对控制策略的有效性进行了仿真验证。研究结果表明,合理准确地控制SMES的功率输出可以改善系统等值功角的变化,加快系统稳定的恢复速度,该研究结果可为利用SMES提高多机系统暂态稳定性的控制提供参考。