A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur...A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.展开更多
A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconductin...A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconducting solenoids (Nb-Ti/Cu) and six superconducting sextupoles (Nb-Ti/Cu). Different from the conventional supercon- ducting ECR magnetic structure, the SEC17AL Ⅱ includes three superconducting solenoid coils' that are located inside the superconducting sextupoles. The SECRAL Ⅱ can significantly reduce the interaction forces between the sextupole and the solenoids, and the magnets can also be more compact in size. For this multi-component SECRAL Ⅱ generating its self field of -8 T and being often exposed to the high self field, the mechanical analysis has become the main issue to keep their stress at 〈200 MPa on coils. The analytical and experimental results in mechanics are presented in the SECRAL Ⅱ structure. To improve the accuracy and efficiency of analysis, according to the composite rule of micromechanics, the equivalent uniform windings are used to simulate the epoxy-impregnated Nb-Ti/Cu coils. In addition, using low temperature strain gauges and a wireless fast strain acquisition system, a fundamental experiment on the based on our analysis, the stresses and deformations optimized. strains developments of a sextupole is reported. Finally, for its assembly of each SECRAL Ⅱ coil will be further展开更多
A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium re...A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium refrigerator is used to cool the magnets and liquefy helium which can provide 3.8 K-4.5 K, 1.8 bar-5 bar, 20g/s-40g/s supercritical helium for the coils or a 150 L/h liquefying helium capacity. Other major parts include a large vacuum vessel (3.5 m in diameter and 6.1 m in height) with a liquid nitrogen temperature shield, two pairs of current lead, three sets of 14.5 kA-50 kA power supply with a fast dump quench protection circuitry, a data acquisition and control system, a vacuum pumping system, and a gas tightness inspecting devise. The primary goal of the test facility is to test the EAST TF and PF magnets in relation to their electromagnetic, stability, thermal, hydraulic, and mechanical performance. The construction of this facility was completed in 2002, followed by a series of systematic coil testing. By now ten TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a model coil of the PF large coil have been successfully tested in the facility.展开更多
Screening current is recognized as one of the critical elements limiting the progression of superconducting magnets toward achieving higher magnetic fields. Currently, most non-insulated(NI) superconducting magnets co...Screening current is recognized as one of the critical elements limiting the progression of superconducting magnets toward achieving higher magnetic fields. Currently, most non-insulated(NI) superconducting magnets consider the magnet as insulated when addressing the issue of screening current. However, the bypass current in the NI magnet can modify the actual history of magnetization, so the screening current in NI magnet will be different from that in the insulated magnet. This paper presents a novel method based on the homogenized T-A formulation(T is the current vector potential, and A is the magnetic vector potential), which enables real-time simulation of both the bypass current behavior and the implications of screening current in NI superconducting magnets, even when these magnets contain tens of thousands of turns. We have developed a 32 T NI hybrid superconducting magnet and validated the effectiveness of this method through experiments. Employing this efficacious method,we conducted a comprehensive calculation of screening current in NI magnets, comparing them with insulated magnets in terms of screening current-induced stress(SCIS), screening current-induced field(SCIF), and losses. The results indicate that in the NI insert coils, the sequential excitation of background coils and insert coils induces a reverse screening current, resulting in slightly lower SCIF and SCIS compared to those in the insulated magnets. The method and results can contribute to the enhancement of magnet design and provide valuable insights for the development of ultra-high fields(UHF) NI magnets.展开更多
Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufact...Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.展开更多
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app...Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.展开更多
The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic f...The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.展开更多
The superconducting magnet system of a fusion reactor plays a vital role in plasma confinement,a process that can be dis-rupted by various operational factors.A critical parameter for evaluating the temperature margin...The superconducting magnet system of a fusion reactor plays a vital role in plasma confinement,a process that can be dis-rupted by various operational factors.A critical parameter for evaluating the temperature margin of superconducting magnets during normal operation is the nuclear heating caused by D-T neutrons.This study investigates the impact of nuclear heat-ing on a superconducting magnet system by employing an improved analysis method that combines neutronics and thermal hydraulics.In the magnet system,toroidal field(TF)magnets are positioned closest to the plasma and bear the highest nuclear-heat load,making them prime candidates for evaluating the influence of nuclear heating on stability.To enhance the modeling accuracy and facilitate design modifications,a parametric TF model that incorporates heterogeneity is established to expedite the optimization design process and enhance the accuracy of the computations.A comparative analysis with a homogeneous TF model reveals that the heterogeneous model improves accuracy by over 12%.Considering factors such as heat load,magnetic-field strength,and cooling conditions,the cooling circuit facing the most severe conditions is selected to calculate the temperature of the superconductor.This selection streamlines the workload associated with thermal-hydraulic analysis.This approach enables a more efficient and precise evaluation of the temperature margin of TF magnets.Moreover,it offers insights that can guide the optimization of both the structure and cooling strategy of superconducting magnet systems.展开更多
In the upgrade project of the Beijing Electron Positron Collider (BEPC Ⅱ ), three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity. A cryogenic system with a tot...In the upgrade project of the Beijing Electron Positron Collider (BEPC Ⅱ ), three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity. A cryogenic system with a total capacity of 0.5 kW at 4.5 K was built at the Institute of High Energy Physics (IHEP) to support the operations of these superconducting devices. For preparing the commissioning of the system, the refrigeration process was simulated and analyzed numerically. The numerical model was based on the latest engineering progress and focused on the normal operation mode. The pressure and temperature profiles of the cryogenic system are achieved with the simulation. The influence of the helium mass flow rates to cool superconducting magnets on the thermodynamic parameters of their normal operation is also studied and discussed in this paper.展开更多
A superconducting magnet prototype for Accelerator Driven Sub-critical System Injection- I had been designed and fabricated, and tested in a new made vertical Dewar in November 2012. Batch magnet production was proces...A superconducting magnet prototype for Accelerator Driven Sub-critical System Injection- I had been designed and fabricated, and tested in a new made vertical Dewar in November 2012. Batch magnet production was processed after some major revision from the magnet prototype, they include: removing off the perm-alloy shield, extending the iron yoke, using thin superconducting wire, etc. The first one of the batch magnets was tested in the vertical Dewar at the Harbin Institute of Technologyin in September 2013. A field measurement was carried out at the same time by the measurement platform that was seated on the top of the vertical Dewar, the measurement results met the design requirements. This paper will present the field measurement system design, measurement results and discussion on the residual field from the persistent current effect.展开更多
In an ADS injector i, there are five superconducting magnets in each cryomodule. Each superconducting magnet contains a solenoid magnet, a horizontal dipole corrector (HDC), and a vertical dipole corrector (VDC). ...In an ADS injector i, there are five superconducting magnets in each cryomodule. Each superconducting magnet contains a solenoid magnet, a horizontal dipole corrector (HDC), and a vertical dipole corrector (VDC). Six current leads will tm required to power the electrical circuits, from room temperature to the 2.1 K liquid helium bath: two leads carry 100 A current for the solenoid magnet while the other four carry 12 A for the HDC and the VDC. This paper presents the principle of current lead optimization, which includes the cooling methods, the choice of material and structure, and the issues for current lead integration.展开更多
We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat swi...We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.展开更多
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe...An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.展开更多
To achieve the utilization of the abandoned ultrafine ilmenite(-20 μm) produced in the titanium magnetite processing plant in Panzhihua,the superconducting high-gradient magnetic separation(SMS) technology was propos...To achieve the utilization of the abandoned ultrafine ilmenite(-20 μm) produced in the titanium magnetite processing plant in Panzhihua,the superconducting high-gradient magnetic separation(SMS) technology was proposed in this study.After optimizing the conditions of magnetic intensity,feeding and pulsation,an SMS concentrate with TiO_(2) grade of 16.03% and TiO_(2) recovery of 66.39% was obtained through one roughing-one cleaning pre-concentration flowsheet.The specific magnetic force and magnetic force were calculated and analysed to illustrate the pre-concentration mechanism,and the results revealed that the combination of high magnetic field and strong pulsating resulted in the effective preconcentration of the ultrafine ilmenite in the SMS process.In addition,the magnetic force analysis indicated that the high magnetic intensity and high magnetic gradient are the key factors of the SMS technology.Furthermore,the EDS-Mapping detection certified that the ultrafine ilmenite was concentrated from the gangue minerals using SMS technology.展开更多
A wide-bore 5 T NbTi superconducting magnet, for magnetic separator, with an operational current of 106 A is designed and fabricated. This magnet with a Ф60 mm roomtemperature bore is installed in a vacuum cryostat a...A wide-bore 5 T NbTi superconducting magnet, for magnetic separator, with an operational current of 106 A is designed and fabricated. This magnet with a Ф60 mm roomtemperature bore is installed in a vacuum cryostat and immersed in liquid helium. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to maintain the cooling shield at 70 K and the condenser at 4 K in order to achieve the zero vaporization loss of liquid helium. The cooling power of the GM cryocooler is 1.5 W. In this paper, the design, heat leakage, stress analysis, quench protection characteristics and preliminary test results are presented.展开更多
The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supp...The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm.展开更多
For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identifi...For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identification of the weighting of harmonic components in the current distribution that will generate a magnetic field whose z-component follows a chosen spherical harmonic function. Mathematical expressions which relate the harmonic terms in the cylin- drical current distribution to spherical harmonic terms in the field expansion are established. Thus a simple matrix inversion approach can be used to design a shim coil of any order pure harmonic. The expressions providing a spherical harmonic decomposition of the field components produced by a particular cylindrical current distribution are novel. A stream function was applied to obtain the discrete wire distribution on the cylindrical-surface. This method does not require the setting of the target-field points. The discussion referring to matrix equations in terms of condition numbers proves that this novel approach has no ill-conditioned problems. The results also indicate that it can be used to design cylindrical-surface shim coils of finite length that will generate a field variation which follows a particular spherical harmonic over a reasonably large-sized volume.展开更多
The mission of Korea Superconducting Tokamak Advanced Research (KSTAR)project is to develop an advanced steady-state superconducting tokamak for establishing a scientificand technological basis for an attractive fusio...The mission of Korea Superconducting Tokamak Advanced Research (KSTAR)project is to develop an advanced steady-state superconducting tokamak for establishing a scientificand technological basis for an attractive fusion reactor. Because one of the KSTAR mission is toachieve a steady-state operation, the use of superconducting coils is an obvious choice for themagnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into usein both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasmacenter and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement inKSTAR magnet-system development includes the development of CICC, the development of a full-size TFmodel coil, the development of a coil system for background magnetic-field generation , theconstruction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are inthe stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.展开更多
The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By ...The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By optimizing the homogeneity of Diameter Sphere Voltnne (DSV), the positions and currents of the seed coils will be obtained. Secondly, according to the positions and currents of the seed coils, the current density of superconducting wires is determined, and then the original sections for the coils can be achieved. An optimization for the homogeneity based on the constrained nonlincar optimization method is employed to determine the coils with good homogeneity. Thirdly, the magnetic field generated by previous coils is set as the background field, then add two coils with reverse current, and optimize the stray field line of 5 Gauss in a certain scope. Finally, a further optimization for the homogeneity is used to get Final coils. This method can also be used in the design of other axisynmaetfic superconducting MRI magnets.展开更多
HT7U is a large fusion experimental device. It will be built in the Institute of Plasma Physics of Chinese Academy of Sciences. The mission of HT-7U is to develop the scientific basis for a continuously operating toka...HT7U is a large fusion experimental device. It will be built in the Institute of Plasma Physics of Chinese Academy of Sciences. The mission of HT-7U is to develop the scientific basis for a continuously operating tokama-k fusion reactor. This paper describes only a toroidal field (TF) superconducting magnet system of HT7U. In this paper, design criteria of conductor and stability analysis, coil winding and support structure design of magnet system, mechanical calculation and stress analysis, heat load evaluation are given.展开更多
基金the National Natural Science Foundation of China(Nos.11932008 and 11672120)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-kb01)。
文摘A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.
基金Supported by the National Natural Science Foundation of China under Grant No 11302225the China Postdoctoral Science Foundation under Grant Nos 2014M560820 and 2015T81071
文摘A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconducting solenoids (Nb-Ti/Cu) and six superconducting sextupoles (Nb-Ti/Cu). Different from the conventional supercon- ducting ECR magnetic structure, the SEC17AL Ⅱ includes three superconducting solenoid coils' that are located inside the superconducting sextupoles. The SECRAL Ⅱ can significantly reduce the interaction forces between the sextupole and the solenoids, and the magnets can also be more compact in size. For this multi-component SECRAL Ⅱ generating its self field of -8 T and being often exposed to the high self field, the mechanical analysis has become the main issue to keep their stress at 〈200 MPa on coils. The analytical and experimental results in mechanics are presented in the SECRAL Ⅱ structure. To improve the accuracy and efficiency of analysis, according to the composite rule of micromechanics, the equivalent uniform windings are used to simulate the epoxy-impregnated Nb-Ti/Cu coils. In addition, using low temperature strain gauges and a wireless fast strain acquisition system, a fundamental experiment on the based on our analysis, the stresses and deformations optimized. strains developments of a sextupole is reported. Finally, for its assembly of each SECRAL Ⅱ coil will be further
基金The project supported by the National Meg-science Engineering Project of the Chinese Government
文摘A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium refrigerator is used to cool the magnets and liquefy helium which can provide 3.8 K-4.5 K, 1.8 bar-5 bar, 20g/s-40g/s supercritical helium for the coils or a 150 L/h liquefying helium capacity. Other major parts include a large vacuum vessel (3.5 m in diameter and 6.1 m in height) with a liquid nitrogen temperature shield, two pairs of current lead, three sets of 14.5 kA-50 kA power supply with a fast dump quench protection circuitry, a data acquisition and control system, a vacuum pumping system, and a gas tightness inspecting devise. The primary goal of the test facility is to test the EAST TF and PF magnets in relation to their electromagnetic, stability, thermal, hydraulic, and mechanical performance. The construction of this facility was completed in 2002, followed by a series of systematic coil testing. By now ten TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a model coil of the PF large coil have been successfully tested in the facility.
基金supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602800)the National Natural Science Foundation of China (Grant Nos. 52325701, 52293421, 52293422, and 52293423)the Synergetic Extreme Condition User Facility (SECUF) Project。
文摘Screening current is recognized as one of the critical elements limiting the progression of superconducting magnets toward achieving higher magnetic fields. Currently, most non-insulated(NI) superconducting magnets consider the magnet as insulated when addressing the issue of screening current. However, the bypass current in the NI magnet can modify the actual history of magnetization, so the screening current in NI magnet will be different from that in the insulated magnet. This paper presents a novel method based on the homogenized T-A formulation(T is the current vector potential, and A is the magnetic vector potential), which enables real-time simulation of both the bypass current behavior and the implications of screening current in NI superconducting magnets, even when these magnets contain tens of thousands of turns. We have developed a 32 T NI hybrid superconducting magnet and validated the effectiveness of this method through experiments. Employing this efficacious method,we conducted a comprehensive calculation of screening current in NI magnets, comparing them with insulated magnets in terms of screening current-induced stress(SCIS), screening current-induced field(SCIF), and losses. The results indicate that in the NI insert coils, the sequential excitation of background coils and insert coils induces a reverse screening current, resulting in slightly lower SCIF and SCIS compared to those in the insulated magnets. The method and results can contribute to the enhancement of magnet design and provide valuable insights for the development of ultra-high fields(UHF) NI magnets.
基金supported in part by the National Key Research and Development Program of China(No.2022YFA1603402)in part by the National Natural Science Foundation of China(No.11875272)。
文摘Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12272156)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb06)+1 种基金the Gansu Science and Technology ProgramLanzhou City’s Scientific Research Funding Subsidy to Lanzhou University of China。
文摘Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.
基金This work is funded by the Magnetic Resonance Union of the Chinese Academy of Sciences(Grant No.2021gzl002)the International Partnership Program of Chinese Academy of Sciences(Grant No.182111KYSB20210014)+1 种基金the National Science Foundation of China(Grant No.52293423,Grant No.52277031)the Research and Development of Key Technologies and Equipment for Major Science and Technology Infrastructure of Development and Reform Commission of Shenzhen Municipality,China(Grant No.ZDKJ20190305002).
文摘The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets.
基金the National Natural Science Foundation of China(Nos.52222701,52077211,and 52307034).
文摘The superconducting magnet system of a fusion reactor plays a vital role in plasma confinement,a process that can be dis-rupted by various operational factors.A critical parameter for evaluating the temperature margin of superconducting magnets during normal operation is the nuclear heating caused by D-T neutrons.This study investigates the impact of nuclear heat-ing on a superconducting magnet system by employing an improved analysis method that combines neutronics and thermal hydraulics.In the magnet system,toroidal field(TF)magnets are positioned closest to the plasma and bear the highest nuclear-heat load,making them prime candidates for evaluating the influence of nuclear heating on stability.To enhance the modeling accuracy and facilitate design modifications,a parametric TF model that incorporates heterogeneity is established to expedite the optimization design process and enhance the accuracy of the computations.A comparative analysis with a homogeneous TF model reveals that the heterogeneous model improves accuracy by over 12%.Considering factors such as heat load,magnetic-field strength,and cooling conditions,the cooling circuit facing the most severe conditions is selected to calculate the temperature of the superconductor.This selection streamlines the workload associated with thermal-hydraulic analysis.This approach enables a more efficient and precise evaluation of the temperature margin of TF magnets.Moreover,it offers insights that can guide the optimization of both the structure and cooling strategy of superconducting magnet systems.
文摘In the upgrade project of the Beijing Electron Positron Collider (BEPC Ⅱ ), three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity. A cryogenic system with a total capacity of 0.5 kW at 4.5 K was built at the Institute of High Energy Physics (IHEP) to support the operations of these superconducting devices. For preparing the commissioning of the system, the refrigeration process was simulated and analyzed numerically. The numerical model was based on the latest engineering progress and focused on the normal operation mode. The pressure and temperature profiles of the cryogenic system are achieved with the simulation. The influence of the helium mass flow rates to cool superconducting magnets on the thermodynamic parameters of their normal operation is also studied and discussed in this paper.
文摘A superconducting magnet prototype for Accelerator Driven Sub-critical System Injection- I had been designed and fabricated, and tested in a new made vertical Dewar in November 2012. Batch magnet production was processed after some major revision from the magnet prototype, they include: removing off the perm-alloy shield, extending the iron yoke, using thin superconducting wire, etc. The first one of the batch magnets was tested in the vertical Dewar at the Harbin Institute of Technologyin in September 2013. A field measurement was carried out at the same time by the measurement platform that was seated on the top of the vertical Dewar, the measurement results met the design requirements. This paper will present the field measurement system design, measurement results and discussion on the residual field from the persistent current effect.
文摘In an ADS injector i, there are five superconducting magnets in each cryomodule. Each superconducting magnet contains a solenoid magnet, a horizontal dipole corrector (HDC), and a vertical dipole corrector (VDC). Six current leads will tm required to power the electrical circuits, from room temperature to the 2.1 K liquid helium bath: two leads carry 100 A current for the solenoid magnet while the other four carry 12 A for the HDC and the VDC. This paper presents the principle of current lead optimization, which includes the cooling methods, the choice of material and structure, and the issues for current lead integration.
基金supported by the Beijing Commission of Science and Technology(Grant No.Z211100004021012)Special Research Assistant Program of the Chinese Academy of Sciences(Grant No.E3VP021RX4)。
文摘We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.
基金This research was funded by the Deputyship for Research and Innovation,Ministry of Education,Saudi Arabia,through the University of Tabuk,Grant Number S-1443-0123.
文摘An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.
基金financial support from the Joint Fund (Key program U2067201) for Nuclear Technology Innovation Sponsored by the National Natural Science Foundation of China and the China National Nuclear CorporationNational key research and development program (2019YFC1907702) Sponsored by MOSTthe Fundamental Research Funds for the Central Universities (N2001013) for supporting this research。
文摘To achieve the utilization of the abandoned ultrafine ilmenite(-20 μm) produced in the titanium magnetite processing plant in Panzhihua,the superconducting high-gradient magnetic separation(SMS) technology was proposed in this study.After optimizing the conditions of magnetic intensity,feeding and pulsation,an SMS concentrate with TiO_(2) grade of 16.03% and TiO_(2) recovery of 66.39% was obtained through one roughing-one cleaning pre-concentration flowsheet.The specific magnetic force and magnetic force were calculated and analysed to illustrate the pre-concentration mechanism,and the results revealed that the combination of high magnetic field and strong pulsating resulted in the effective preconcentration of the ultrafine ilmenite in the SMS process.In addition,the magnetic force analysis indicated that the high magnetic intensity and high magnetic gradient are the key factors of the SMS technology.Furthermore,the EDS-Mapping detection certified that the ultrafine ilmenite was concentrated from the gangue minerals using SMS technology.
文摘A wide-bore 5 T NbTi superconducting magnet, for magnetic separator, with an operational current of 106 A is designed and fabricated. This magnet with a Ф60 mm roomtemperature bore is installed in a vacuum cryostat and immersed in liquid helium. A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to maintain the cooling shield at 70 K and the condenser at 4 K in order to achieve the zero vaporization loss of liquid helium. The cooling power of the GM cryocooler is 1.5 W. In this paper, the design, heat leakage, stress analysis, quench protection characteristics and preliminary test results are presented.
基金supported by National Natural Science Foundation of China(No.50977086)
文摘The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60871001)
文摘For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identification of the weighting of harmonic components in the current distribution that will generate a magnetic field whose z-component follows a chosen spherical harmonic function. Mathematical expressions which relate the harmonic terms in the cylin- drical current distribution to spherical harmonic terms in the field expansion are established. Thus a simple matrix inversion approach can be used to design a shim coil of any order pure harmonic. The expressions providing a spherical harmonic decomposition of the field components produced by a particular cylindrical current distribution are novel. A stream function was applied to obtain the discrete wire distribution on the cylindrical-surface. This method does not require the setting of the target-field points. The discussion referring to matrix equations in terms of condition numbers proves that this novel approach has no ill-conditioned problems. The results also indicate that it can be used to design cylindrical-surface shim coils of finite length that will generate a field variation which follows a particular spherical harmonic over a reasonably large-sized volume.
基金The project supported by the Korea Ministry of Science and Technology under the KSTAR Project
文摘The mission of Korea Superconducting Tokamak Advanced Research (KSTAR)project is to develop an advanced steady-state superconducting tokamak for establishing a scientificand technological basis for an attractive fusion reactor. Because one of the KSTAR mission is toachieve a steady-state operation, the use of superconducting coils is an obvious choice for themagnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into usein both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasmacenter and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement inKSTAR magnet-system development includes the development of CICC, the development of a full-size TFmodel coil, the development of a coil system for background magnetic-field generation , theconstruction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are inthe stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.
基金supported by the National Natural Science Foundation of China(No.50577063)
文摘The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By optimizing the homogeneity of Diameter Sphere Voltnne (DSV), the positions and currents of the seed coils will be obtained. Secondly, according to the positions and currents of the seed coils, the current density of superconducting wires is determined, and then the original sections for the coils can be achieved. An optimization for the homogeneity based on the constrained nonlincar optimization method is employed to determine the coils with good homogeneity. Thirdly, the magnetic field generated by previous coils is set as the background field, then add two coils with reverse current, and optimize the stray field line of 5 Gauss in a certain scope. Finally, a further optimization for the homogeneity is used to get Final coils. This method can also be used in the design of other axisynmaetfic superconducting MRI magnets.
文摘HT7U is a large fusion experimental device. It will be built in the Institute of Plasma Physics of Chinese Academy of Sciences. The mission of HT-7U is to develop the scientific basis for a continuously operating tokama-k fusion reactor. This paper describes only a toroidal field (TF) superconducting magnet system of HT7U. In this paper, design criteria of conductor and stability analysis, coil winding and support structure design of magnet system, mechanical calculation and stress analysis, heat load evaluation are given.