Increasing the detection efficiency (DE) is a hot issue in the development of the superconducting nanowire single photon detector (SNSPD). In this work, a cavity-integrated structure coupled to the SNSPD is used t...Increasing the detection efficiency (DE) is a hot issue in the development of the superconducting nanowire single photon detector (SNSPD). In this work, a cavity-integrated structure coupled to the SNSPD is used to enhance the light absorption of nanowire. Ultra-thin Nb films are successfully prepared by magnetron sputtering, which are used to fabricate Nb/Al SNSPD with the curve of lOOnm and the square area of 4 × 4μm2 by sputtering and the lift-off method. To characterize the optical and electrical performance of the cavity-integrated SNSPD, a reliable cryogenic research system is built up based on a He3 system. To satisfy the need of light coupling, a packaging structure with collimator is conducted. Both DE and the dark count rates increase with lb. It is also found that the DE of SNSPD with cavities can be up to 0.17% at the temperature of 0.7K under the infrared light of 1550nm, which is obviously higher than that of the SNSPD directly fabricated upon silicon without any cavity structure.展开更多
Superconducting nanowire single-photon detectors (SNSPDs) with a composite optical structure composed of phase-grating and optical cavity structures are designed to enhance both the system detection efficiency and t...Superconducting nanowire single-photon detectors (SNSPDs) with a composite optical structure composed of phase-grating and optical cavity structures are designed to enhance both the system detection efficiency and the response bandwidth. Numerical simulation by the finite-difference time-domain method shows that the photon absorption capacity of SNSPDs with a composite optical structure can be enhanced significantly by adjusting the parameters of the phase-grating and optical cavity structures at multiple frequency bands. The absorption capacity of the superconducting nanowires reaches 70%, 72%, 60.73%, 61.7%, 41.2%, and 46.5% at wavelengths of 684, 850, 732, 924, 1256, and 1426nm, respectively. The use of a composite optical structure reduces the total filling factor of superconducting nanowires to only 0.25, decreases the kinetic inductance of SNSPDs, and improves the count rates.展开更多
Superconducting nanowire single-photon detectors(SNSPDs) have attracted considerable attention owing to their excellent detection performance;however, the underlying physics of the detection process is still unclear.I...Superconducting nanowire single-photon detectors(SNSPDs) have attracted considerable attention owing to their excellent detection performance;however, the underlying physics of the detection process is still unclear.In this study, we investigate the wavelength dependence of the intrinsic detection efficiency(IDE) for NbN SNSPDs.We fabricate various NbN SNSPDs with linewidths ranging from 30 nm to 140 nm.Then, for each detector, the IDE curves as a function of bias current for different incident photon wavelengths of 510–1700 nm are obtained.From the IDE curves, the relations between photon energy and bias current at a certain IDE are extracted.The results exhibit clear nonlinear energy–current relations for the NbN detectors, indicating that a detection model only considering quasiparticle diffusion is unsuitable for the meander-type NbN-based SNSPDs.Our work provides additional experimental data on SNSPD detection mechanism and may serve as an interesting reference for further investigation.展开更多
The performance of single-photon detectors can be enhanced by using nano-antenna. The characteristics of the superconducting nano-wire single-photon detector with cavity plus anti-reflect coating and specially designe...The performance of single-photon detectors can be enhanced by using nano-antenna. The characteristics of the superconducting nano-wire single-photon detector with cavity plus anti-reflect coating and specially designed nano~ antenna is analysed. The photon collection efficiency of the detector is enhanced without damaging the detector's speed, thus getting rid of the dilemma of speed and efficiency. The characteristics of nano-antenna are discussed, such as the position and the effect of the active area, and the best result is given. The photon collection efficiency is increased by 92 times compared with that of existing detectors.展开更多
High detection efficiency and low intrinsic dark count rate are two advantages of superconducting nanowire single photon detectors(SNSPDs).However,the stray photons penetrated into the fiber would cause the extrinsic ...High detection efficiency and low intrinsic dark count rate are two advantages of superconducting nanowire single photon detectors(SNSPDs).However,the stray photons penetrated into the fiber would cause the extrinsic dark count rate,owing to the free running mode of SNSPDs.In order to improve the performance of SNSPDs in realistic scenarios,stray photons should be investigated and suppression methods should be adopted.In this study,we demonstrate the pulsegated mode,with 500 kHz gating frequency,of a commercial SNSPD system for suppressing the response of stray photons about three orders of magnitude than its free-running counterpart on the extreme test conditions.When we push the gating frequency to 8 MHz,the dark count rate still keeps under 4% of free-running mode.In experiments,the intrinsic dark count rate is also suppressed to 4.56 × 10^(-2) counts per second with system detection efficiency of 76.4372%.Furthermore,the time-correlated single-photon counting analysis also approves the validity of our mode in suppressing the responses of stray photons.展开更多
Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and t...Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature (T N) of 403K working at 4.2K and 0.65THz. As a result, the noise equivalent power of 1.5pW/Hz 1/2 and the response time of 64ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2K and 0.65THz.展开更多
Superconducting nanowire single-photon detectors(SNSPDs)have become a mainstream photon-counting technology that has been widely applied in various scenarios.So far,most multi-channel SNSPD systems,either reported in ...Superconducting nanowire single-photon detectors(SNSPDs)have become a mainstream photon-counting technology that has been widely applied in various scenarios.So far,most multi-channel SNSPD systems,either reported in literature or commercially available,are polarization sensitive,that is,the system detection efficiency(SDE)of each channel is dependent on the state of polarization of the to-be-detected photons.Here,we reported an eight-channel system with fractal SNSPDs working in the wavelength range of 930 to 940 nm,which are all featured with low polarization sensitivity.In a close-cycled Gifford-McMahon cryocooler system with the base temperature of 2.2 K,we installed and compared the performance of two types of devices:(1)SNSPD,composed of a single,continuous nanowire and(2)superconducting nanowire avalanche photodetector(SNAP),composed of 16 cascaded units of two nanowires electrically connected in parallel.The highest SDE among the eight channels reaches 96+^(4)_(-5%),with the polarization sensitivity of 1.02 and a dark-count rate of 13 counts per second.The average SDE for eight channels for all states of polarization is estimated to be 90±5%.It is concluded that both the SNSPDs and the SNAPs can reach saturated,high SDE at the wavelength of interest,and the SNSPDs show lower dark-count(false-count)rates,whereas the SNAPs show better properties in the time domain.With the adoption of this system,we showcased the measurements of the second-order photon-correlation functions of light emission from a singlephoton source based on a semiconductor quantum dot and from a pulsed laser.It is believed that this work will provide new choices of systems with single-photon detectors combining the merits of high SDE,low polarization sensitivity,and low noise that can be tailored for different applications.展开更多
Efficient and precise photon-number-resolving detectors are essential for optical quantum information science.Despite this,very few detectors have been able to distinguish photon numbers with both high fidelity and a ...Efficient and precise photon-number-resolving detectors are essential for optical quantum information science.Despite this,very few detectors have been able to distinguish photon numbers with both high fidelity and a large dynamic range,all while maintaining high speed and high timing precision.Superconducting nanostrip-based detectors excel at counting single photons efficiently and rapidly,but face challenges in balancing dynamic range and fidelity.Here,we have pioneered the demonstration of 10 true photon-number resolution using a superconducting microstrip detector,with readout fidelity reaching an impressive 98%and 90%for 4-photon and 6-photon events,respectively.Furthermore,our proposed dual-channel timing setup drastically reduces the amount of data acquisition by 3 orders of magnitude,allowing for real-time photon-number readout.We then demonstrate the utility of our scheme by implementing a quantum random-number generator based on sampling the parity of a coherent state,which guarantees inherent unbiasedness,robustness against experimental imperfections and environmental noise,as well as invulnerability to eavesdropping.Our solution boasts high fidelity,a large dynamic range,and real-time characterization for photon-number resolution and simplicity with respect to device structure,fabrication,and readout,which may provide a promising avenue towards optical quantum information science.展开更多
We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat swi...We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.展开更多
We systematically investigated the detection performance of Al nanostrips for single photons at various wavelengths.The Al films were deposited using magnetron sputtering,and the sophisticated nanostructures and morph...We systematically investigated the detection performance of Al nanostrips for single photons at various wavelengths.The Al films were deposited using magnetron sputtering,and the sophisticated nanostructures and morphology of the deposited films were revealed through high-resolution transmission electron microscopy.The fabricated Al meander nanostrips,with a thickness of 4.2 nm and a width of 178 nm,exhibited a superconducting transition temperature of 2.4 K and a critical current of approximately 5μA at 0.85 K.While the Al nanostrips demonstrated a saturated internal quantum efficiency for 405-nm photons,the internal detection efficiency exhibited an exponential dependence on bias current without any saturation tendency for 1550-nm photons.This behavior can be attributed to the relatively large diffusion coefficient and coherence length of the Al films.By further narrowing the nanostrip width,the Al-SNSPDs remain capable of effectively detecting single telecom photons to facilitate practical applications.展开更多
Optical spectrum analysis provides a wealth of information about the physical world.Throughout the development of optical spectrum analysis,sensitivity has been one of the major topics and has become essential in appl...Optical spectrum analysis provides a wealth of information about the physical world.Throughout the development of optical spectrum analysis,sensitivity has been one of the major topics and has become essential in applications dealing with faint light.Various high-sensitivity optical detection technologies have been applied in optical spectrum analysis to enhance its sensitivity to single-photon level.As an emerging single-photon detection technology,superconducting nanowire single-photon detectors(SNSPDs)have many impressive features such as high detection efficiency,broad operation bandwidth,small timing jitter,and so on,which make them promising for enhancing the performance of optical spectral analysis.Diverse schemes for photon-counting spectrometers based on SNSPDs have been demonstrated.This article reviews these impressive works and prospects for the future development of this technology.Further breakthroughs can be expected in its theories,device performance,applications,and combinations with in-sensor computing,promoting it to be a mature and versatile solution for optical spectrum analysis on ultra-faint light.展开更多
高灵敏度的红外探测系统对于远距离探测有巨大的潜力,但光学系统内部的噪声会抑制探测系统的信噪比,从而降低探测灵敏度与探测距离.本文基于红外超导纳米线单光子探测器,设计了一个工作在中红外波段的光学系统,构建了红外光学系统自发...高灵敏度的红外探测系统对于远距离探测有巨大的潜力,但光学系统内部的噪声会抑制探测系统的信噪比,从而降低探测灵敏度与探测距离.本文基于红外超导纳米线单光子探测器,设计了一个工作在中红外波段的光学系统,构建了红外光学系统自发辐射计算模型,理论分析了红外光学系统的信噪比和噪声特性.首次提出了利用高性能超导单光子探测器精确表征红外光学系统的微弱背景辐射光信号,为优化设计红外系统提供了依据.并且基于超导单光子探测器的光子计数能力,研究了光学系统的背景辐射对红外探测系统性能的影响,并优化了光学系统的性能.实验结果表明,超导单光子探测器对于分析红外光学系统具有较高的灵敏度,最小可分辨移动距离为2.74×10^(-2)mm,在黑体温度为100℃时,光子计数率提高了6.4×10^(4)cps(1 cps=1 cycle per second),光学系统的耦合效率提升了97%;在黑体温度为102℃时,光子计数率提高了9.1×10^(4)cps,光学系统的耦合效率提升了114%,降低了杂散辐射对探测系统的影响,同等条件下系统信噪比提升2.7倍,对于超导红外探测系统的应用研究具有重要意义.展开更多
通过实验比较研究了基于SNSPD与SPAD探测器的激光测距系统.实验中,当接收回波端衰减120 d B时,天空光背景可忽略,基于SPAD的激光测距系统探测概率低于0.2%,而基于SNSPD的激光测距系统探测概率达35%;当激光发射频率低于1 k Hz,基于SNSPD...通过实验比较研究了基于SNSPD与SPAD探测器的激光测距系统.实验中,当接收回波端衰减120 d B时,天空光背景可忽略,基于SPAD的激光测距系统探测概率低于0.2%,而基于SNSPD的激光测距系统探测概率达35%;当激光发射频率低于1 k Hz,基于SNSPD的激光测距系统探测概率比SPAD高60%以上.研究表明:在探测弱信号回波光子时,SNSPD的探测性能远远优于SPAD,其原因是SNSPD具有较低的暗计数和高探测概率.与此同时,在接收端无衰减情况下,天空光背景会带来暗计数,影响测距系统信噪比.通过仿真分析表明,当背景亮度L0高于30 W/(m^2·sr)时,该基于SNSPD的激光测距系统的信噪比低于6,可能影响测距系统稳定探测.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00304the National Natural Science Foundation of China under Grant Nos 60836001 and 61174084the Tsinghua University Initiative Scientific Research Program under Grant No 20131089314
文摘Increasing the detection efficiency (DE) is a hot issue in the development of the superconducting nanowire single photon detector (SNSPD). In this work, a cavity-integrated structure coupled to the SNSPD is used to enhance the light absorption of nanowire. Ultra-thin Nb films are successfully prepared by magnetron sputtering, which are used to fabricate Nb/Al SNSPD with the curve of lOOnm and the square area of 4 × 4μm2 by sputtering and the lift-off method. To characterize the optical and electrical performance of the cavity-integrated SNSPD, a reliable cryogenic research system is built up based on a He3 system. To satisfy the need of light coupling, a packaging structure with collimator is conducted. Both DE and the dark count rates increase with lb. It is also found that the DE of SNSPD with cavities can be up to 0.17% at the temperature of 0.7K under the infrared light of 1550nm, which is obviously higher than that of the SNSPD directly fabricated upon silicon without any cavity structure.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CBA00100 and 2011CBA00200the National Natural Science Foundation of China under Grant Nos 11227904 and 61101012+1 种基金the National High-Technology ResearchDevelopment Program of China under Grant No 2011AA010204the Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves
文摘Superconducting nanowire single-photon detectors (SNSPDs) with a composite optical structure composed of phase-grating and optical cavity structures are designed to enhance both the system detection efficiency and the response bandwidth. Numerical simulation by the finite-difference time-domain method shows that the photon absorption capacity of SNSPDs with a composite optical structure can be enhanced significantly by adjusting the parameters of the phase-grating and optical cavity structures at multiple frequency bands. The absorption capacity of the superconducting nanowires reaches 70%, 72%, 60.73%, 61.7%, 41.2%, and 46.5% at wavelengths of 684, 850, 732, 924, 1256, and 1426nm, respectively. The use of a composite optical structure reduces the total filling factor of superconducting nanowires to only 0.25, decreases the kinetic inductance of SNSPDs, and improves the count rates.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0304000)the National Natural Science Foundation of China(Grant Nos.61671438 and 61827823)+2 种基金the Science and Technology Commission of Shanghai Municipality,China(Grant No.16JC1400402)Program of Shanghai Academic/Technology Research Leader,China(Grant No.18XD1404600)the Joint Research Fund in Astronomy(Grant No.U1631240)under Cooperative Agreement between the NSFC and the Chinese Academy of Sciences
文摘Superconducting nanowire single-photon detectors(SNSPDs) have attracted considerable attention owing to their excellent detection performance;however, the underlying physics of the detection process is still unclear.In this study, we investigate the wavelength dependence of the intrinsic detection efficiency(IDE) for NbN SNSPDs.We fabricate various NbN SNSPDs with linewidths ranging from 30 nm to 140 nm.Then, for each detector, the IDE curves as a function of bias current for different incident photon wavelengths of 510–1700 nm are obtained.From the IDE curves, the relations between photon energy and bias current at a certain IDE are extracted.The results exhibit clear nonlinear energy–current relations for the NbN detectors, indicating that a detection model only considering quasiparticle diffusion is unsuitable for the meander-type NbN-based SNSPDs.Our work provides additional experimental data on SNSPD detection mechanism and may serve as an interesting reference for further investigation.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB923202)
文摘The performance of single-photon detectors can be enhanced by using nano-antenna. The characteristics of the superconducting nano-wire single-photon detector with cavity plus anti-reflect coating and specially designed nano~ antenna is analysed. The photon collection efficiency of the detector is enhanced without damaging the detector's speed, thus getting rid of the dilemma of speed and efficiency. The characteristics of nano-antenna are discussed, such as the position and the effect of the active area, and the best result is given. The photon collection efficiency is increased by 92 times compared with that of existing detectors.
基金Project supported by the National Natural Science Foundation of China(Grant No.61605248)the National Basic Research Program of China(Grant No.2013CB338002)。
文摘High detection efficiency and low intrinsic dark count rate are two advantages of superconducting nanowire single photon detectors(SNSPDs).However,the stray photons penetrated into the fiber would cause the extrinsic dark count rate,owing to the free running mode of SNSPDs.In order to improve the performance of SNSPDs in realistic scenarios,stray photons should be investigated and suppression methods should be adopted.In this study,we demonstrate the pulsegated mode,with 500 kHz gating frequency,of a commercial SNSPD system for suppressing the response of stray photons about three orders of magnitude than its free-running counterpart on the extreme test conditions.When we push the gating frequency to 8 MHz,the dark count rate still keeps under 4% of free-running mode.In experiments,the intrinsic dark count rate is also suppressed to 4.56 × 10^(-2) counts per second with system detection efficiency of 76.4372%.Furthermore,the time-correlated single-photon counting analysis also approves the validity of our mode in suppressing the responses of stray photons.
基金Supported by the National Basic Research Program of China under Grant No 2014CB339800the National Natural Science Foundation of China under Grant Nos 61521001,11173015 and 11227904+1 种基金the Fundamental Research Funds for the Central Universitiesthe Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves of Jiangsu Province
文摘Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature (T N) of 403K working at 4.2K and 0.65THz. As a result, the noise equivalent power of 1.5pW/Hz 1/2 and the response time of 64ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2K and 0.65THz.
基金supported by National Natural Science Foundation of China(62071322).
文摘Superconducting nanowire single-photon detectors(SNSPDs)have become a mainstream photon-counting technology that has been widely applied in various scenarios.So far,most multi-channel SNSPD systems,either reported in literature or commercially available,are polarization sensitive,that is,the system detection efficiency(SDE)of each channel is dependent on the state of polarization of the to-be-detected photons.Here,we reported an eight-channel system with fractal SNSPDs working in the wavelength range of 930 to 940 nm,which are all featured with low polarization sensitivity.In a close-cycled Gifford-McMahon cryocooler system with the base temperature of 2.2 K,we installed and compared the performance of two types of devices:(1)SNSPD,composed of a single,continuous nanowire and(2)superconducting nanowire avalanche photodetector(SNAP),composed of 16 cascaded units of two nanowires electrically connected in parallel.The highest SDE among the eight channels reaches 96+^(4)_(-5%),with the polarization sensitivity of 1.02 and a dark-count rate of 13 counts per second.The average SDE for eight channels for all states of polarization is estimated to be 90±5%.It is concluded that both the SNSPDs and the SNAPs can reach saturated,high SDE at the wavelength of interest,and the SNSPDs show lower dark-count(false-count)rates,whereas the SNAPs show better properties in the time domain.With the adoption of this system,we showcased the measurements of the second-order photon-correlation functions of light emission from a singlephoton source based on a semiconductor quantum dot and from a pulsed laser.It is believed that this work will provide new choices of systems with single-photon detectors combining the merits of high SDE,low polarization sensitivity,and low noise that can be tailored for different applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.62301541,61971408,61827823,and 12033007)support from Shanghai Sailing Program(Grant No.23YF1456200)
文摘Efficient and precise photon-number-resolving detectors are essential for optical quantum information science.Despite this,very few detectors have been able to distinguish photon numbers with both high fidelity and a large dynamic range,all while maintaining high speed and high timing precision.Superconducting nanostrip-based detectors excel at counting single photons efficiently and rapidly,but face challenges in balancing dynamic range and fidelity.Here,we have pioneered the demonstration of 10 true photon-number resolution using a superconducting microstrip detector,with readout fidelity reaching an impressive 98%and 90%for 4-photon and 6-photon events,respectively.Furthermore,our proposed dual-channel timing setup drastically reduces the amount of data acquisition by 3 orders of magnitude,allowing for real-time photon-number readout.We then demonstrate the utility of our scheme by implementing a quantum random-number generator based on sampling the parity of a coherent state,which guarantees inherent unbiasedness,robustness against experimental imperfections and environmental noise,as well as invulnerability to eavesdropping.Our solution boasts high fidelity,a large dynamic range,and real-time characterization for photon-number resolution and simplicity with respect to device structure,fabrication,and readout,which may provide a promising avenue towards optical quantum information science.
基金supported by the Beijing Commission of Science and Technology(Grant No.Z211100004021012)Special Research Assistant Program of the Chinese Academy of Sciences(Grant No.E3VP021RX4)。
文摘We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.
基金Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB0580000)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021230)+2 种基金Shanghai Science and Technology Development Foundation(21YF1455500)Science and Technology Commission of Shanghai Municipality(2019SHZDZX01)National Natural Science Foundation of China(61801462,61827823,61971408).
文摘We systematically investigated the detection performance of Al nanostrips for single photons at various wavelengths.The Al films were deposited using magnetron sputtering,and the sophisticated nanostructures and morphology of the deposited films were revealed through high-resolution transmission electron microscopy.The fabricated Al meander nanostrips,with a thickness of 4.2 nm and a width of 178 nm,exhibited a superconducting transition temperature of 2.4 K and a critical current of approximately 5μA at 0.85 K.While the Al nanostrips demonstrated a saturated internal quantum efficiency for 405-nm photons,the internal detection efficiency exhibited an exponential dependence on bias current without any saturation tendency for 1550-nm photons.This behavior can be attributed to the relatively large diffusion coefficient and coherence length of the Al films.By further narrowing the nanostrip width,the Al-SNSPDs remain capable of effectively detecting single telecom photons to facilitate practical applications.
基金supported by the National Key R&D Program of China(Grant No.2023YFB2806700)the National Natural Science Foundation of China(Grant No.92365210)the Tsinghua Initiative Scientific Research Program,and the project of Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies(JIAOT).
文摘Optical spectrum analysis provides a wealth of information about the physical world.Throughout the development of optical spectrum analysis,sensitivity has been one of the major topics and has become essential in applications dealing with faint light.Various high-sensitivity optical detection technologies have been applied in optical spectrum analysis to enhance its sensitivity to single-photon level.As an emerging single-photon detection technology,superconducting nanowire single-photon detectors(SNSPDs)have many impressive features such as high detection efficiency,broad operation bandwidth,small timing jitter,and so on,which make them promising for enhancing the performance of optical spectral analysis.Diverse schemes for photon-counting spectrometers based on SNSPDs have been demonstrated.This article reviews these impressive works and prospects for the future development of this technology.Further breakthroughs can be expected in its theories,device performance,applications,and combinations with in-sensor computing,promoting it to be a mature and versatile solution for optical spectrum analysis on ultra-faint light.
文摘高灵敏度的红外探测系统对于远距离探测有巨大的潜力,但光学系统内部的噪声会抑制探测系统的信噪比,从而降低探测灵敏度与探测距离.本文基于红外超导纳米线单光子探测器,设计了一个工作在中红外波段的光学系统,构建了红外光学系统自发辐射计算模型,理论分析了红外光学系统的信噪比和噪声特性.首次提出了利用高性能超导单光子探测器精确表征红外光学系统的微弱背景辐射光信号,为优化设计红外系统提供了依据.并且基于超导单光子探测器的光子计数能力,研究了光学系统的背景辐射对红外探测系统性能的影响,并优化了光学系统的性能.实验结果表明,超导单光子探测器对于分析红外光学系统具有较高的灵敏度,最小可分辨移动距离为2.74×10^(-2)mm,在黑体温度为100℃时,光子计数率提高了6.4×10^(4)cps(1 cps=1 cycle per second),光学系统的耦合效率提升了97%;在黑体温度为102℃时,光子计数率提高了9.1×10^(4)cps,光学系统的耦合效率提升了114%,降低了杂散辐射对探测系统的影响,同等条件下系统信噪比提升2.7倍,对于超导红外探测系统的应用研究具有重要意义.
文摘通过实验比较研究了基于SNSPD与SPAD探测器的激光测距系统.实验中,当接收回波端衰减120 d B时,天空光背景可忽略,基于SPAD的激光测距系统探测概率低于0.2%,而基于SNSPD的激光测距系统探测概率达35%;当激光发射频率低于1 k Hz,基于SNSPD的激光测距系统探测概率比SPAD高60%以上.研究表明:在探测弱信号回波光子时,SNSPD的探测性能远远优于SPAD,其原因是SNSPD具有较低的暗计数和高探测概率.与此同时,在接收端无衰减情况下,天空光背景会带来暗计数,影响测距系统信噪比.通过仿真分析表明,当背景亮度L0高于30 W/(m^2·sr)时,该基于SNSPD的激光测距系统的信噪比低于6,可能影响测距系统稳定探测.