The empirically reported values of the critical current density (<i>j<sub>c</sub></i>) of Bi-2212 as 2.4 × 10<sup>5</sup> (<i>j<sub>c</sub></i><sub&g...The empirically reported values of the critical current density (<i>j<sub>c</sub></i>) of Bi-2212 as 2.4 × 10<sup>5</sup> (<i>j<sub>c</sub></i><sub>1</sub>;Sample 1) and 1.0 × 10<sup>6</sup> A/cm<sup>2</sup> (<i>j<sub>c</sub></i><sub>2</sub>;Sample 2) are intriguing because both of them correspond to the <i>same</i> values of the temperature <i>T</i> = 4.2 K and the applied magnetic field <i>H</i> = 12 × 10<sup>4</sup> G. This difference is conventionally attributed to such factors—not all of which are quantifiable—as the geometry, dimensions and the nature of dopants and the manners of preparation of the samples which cause their granular structures, grain boundaries, alignment of the grains and so on to differ. Based on the premise that the chemical potential <i>μ</i> subsumes most of these features, given herein is a novel explanation of the said results in terms of the values of <i>μ</i> of the two samples. This paper revisits the problem that was originally addressed in [Malik G.P., Varma V.S. (2020) WJCMP, 10, 53-70] in the more accurate framework of a subsequent paper [Malik G.P., Varma V.S. (2021) JSNM, 34, 1551-1561]. Besides, it distinguishes between the contributions of the electro-electron (<i>e-e</i>) and the hole-hole (<i>h-h</i>) pairs to <i>j<sub>c</sub></i>—a feature to which no heed was paid earlier. The essence of our findings is that the <i>j<sub>c</sub></i>s of the two samples differ because they are characterized by different values of the <i>primary</i> variables <i>μ<sub>i</sub></i><sub> </sub>and <img src="Edit_e1b831e9-dc51-4c3b-bd84-fa905e3e62b5.png" alt="" />, where <img src="Edit_1f775a80-30ab-447d-861f-afb4ba8fba6a.png" alt="" /> is the effective mass of a charge-carrier and <i>m<sub>e</sub></i><sub> </sub>is the free-electron mass and <i>i</i> = 1 and 2 denote Sample 1 and Sample 2, respectively. In the scenario of the charge-carriers being <i>predominantly h-h</i> pairs, the values of these parameters are estimated to be: <i>μ</i><sub>1</sub> ≈ 12.3 meV, <i>η</i><sub>1</sub> ≈ 0.58;<i>μ</i><sub>2</sub> ≈ 22.7 meV, <i>η</i><sub>2</sub> ≈ 0.94. Following from these and similar estimates when the charge-carriers are <i>e-e</i> pairs, given below for each sample are the detailed results for the values of the <i>secondary</i> variables viz. the number density of the charge-carriers and their critical velocity, the number of occupied Landau levels and the magnetic interaction parameter.展开更多
Powder in tube process(PIT) was adopted for the fabrication of single filament Bi-2223 tapes, and a heat treatment process including the first heat treatment(HT1), intermediate rolling(IR), and second heat treat...Powder in tube process(PIT) was adopted for the fabrication of single filament Bi-2223 tapes, and a heat treatment process including the first heat treatment(HT1), intermediate rolling(IR), and second heat treatment(HT2) was performed. The phase evolution mechanism and microstructure changes during these heat treatment processes were systematically discussed. The influences of HT1 parameters on the phase evolution process of Bi-2223 tapes were discussed. With the optimized HT1 process, a proper Bi-2223 content of about 90% was achieved. HT2 process was also optimized by adding a post annealing process. An obvious increase of current capacity was obtained due to the enhancement of intergrain connections. Single filament Bi-2223 tapes with the critical current of Ic-90 A were fabricated with the optimized sintering process.展开更多
We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistan...We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metalinsulator transition in the normal state. The critical current density(J_c) of the microbridge with a thickness of 136.2 nm was82.3 kA/cm^2 at 3K and reached 105 kA/cm^2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.展开更多
文摘The empirically reported values of the critical current density (<i>j<sub>c</sub></i>) of Bi-2212 as 2.4 × 10<sup>5</sup> (<i>j<sub>c</sub></i><sub>1</sub>;Sample 1) and 1.0 × 10<sup>6</sup> A/cm<sup>2</sup> (<i>j<sub>c</sub></i><sub>2</sub>;Sample 2) are intriguing because both of them correspond to the <i>same</i> values of the temperature <i>T</i> = 4.2 K and the applied magnetic field <i>H</i> = 12 × 10<sup>4</sup> G. This difference is conventionally attributed to such factors—not all of which are quantifiable—as the geometry, dimensions and the nature of dopants and the manners of preparation of the samples which cause their granular structures, grain boundaries, alignment of the grains and so on to differ. Based on the premise that the chemical potential <i>μ</i> subsumes most of these features, given herein is a novel explanation of the said results in terms of the values of <i>μ</i> of the two samples. This paper revisits the problem that was originally addressed in [Malik G.P., Varma V.S. (2020) WJCMP, 10, 53-70] in the more accurate framework of a subsequent paper [Malik G.P., Varma V.S. (2021) JSNM, 34, 1551-1561]. Besides, it distinguishes between the contributions of the electro-electron (<i>e-e</i>) and the hole-hole (<i>h-h</i>) pairs to <i>j<sub>c</sub></i>—a feature to which no heed was paid earlier. The essence of our findings is that the <i>j<sub>c</sub></i>s of the two samples differ because they are characterized by different values of the <i>primary</i> variables <i>μ<sub>i</sub></i><sub> </sub>and <img src="Edit_e1b831e9-dc51-4c3b-bd84-fa905e3e62b5.png" alt="" />, where <img src="Edit_1f775a80-30ab-447d-861f-afb4ba8fba6a.png" alt="" /> is the effective mass of a charge-carrier and <i>m<sub>e</sub></i><sub> </sub>is the free-electron mass and <i>i</i> = 1 and 2 denote Sample 1 and Sample 2, respectively. In the scenario of the charge-carriers being <i>predominantly h-h</i> pairs, the values of these parameters are estimated to be: <i>μ</i><sub>1</sub> ≈ 12.3 meV, <i>η</i><sub>1</sub> ≈ 0.58;<i>μ</i><sub>2</sub> ≈ 22.7 meV, <i>η</i><sub>2</sub> ≈ 0.94. Following from these and similar estimates when the charge-carriers are <i>e-e</i> pairs, given below for each sample are the detailed results for the values of the <i>secondary</i> variables viz. the number density of the charge-carriers and their critical velocity, the number of occupied Landau levels and the magnetic interaction parameter.
基金Funded by the National Natural Science Foundation of China(No.51472206)the National ITER Program of China(2015GB115001)the Program for Innovative Research Team in Shaanxi Province(No.2013KCT-07)
文摘Powder in tube process(PIT) was adopted for the fabrication of single filament Bi-2223 tapes, and a heat treatment process including the first heat treatment(HT1), intermediate rolling(IR), and second heat treatment(HT2) was performed. The phase evolution mechanism and microstructure changes during these heat treatment processes were systematically discussed. The influences of HT1 parameters on the phase evolution process of Bi-2223 tapes were discussed. With the optimized HT1 process, a proper Bi-2223 content of about 90% was achieved. HT2 process was also optimized by adding a post annealing process. An obvious increase of current capacity was obtained due to the enhancement of intergrain connections. Single filament Bi-2223 tapes with the critical current of Ic-90 A were fabricated with the optimized sintering process.
基金supported by the National Natural Science Foundation of China(Grant Nos.11234006,61501220,U1432135,11674054,and 11611140101)Jiangsu Provincial Natural Science Fund(Grant No.SBK2015040804)Opening Project of Wuhan National High Magnetic Field Center(Grant No.2015KF19)
文摘We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metalinsulator transition in the normal state. The critical current density(J_c) of the microbridge with a thickness of 136.2 nm was82.3 kA/cm^2 at 3K and reached 105 kA/cm^2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.