The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th...The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.展开更多
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the...The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.展开更多
The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting th...The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.展开更多
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal syste...This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.展开更多
Supercritical lens(SCL)can break the diffraction limit in the far field and has been demonstrated for high-resolution scanning confocal imaging.Its capability in sharper focusing and needle-like long focal depth shoul...Supercritical lens(SCL)can break the diffraction limit in the far field and has been demonstrated for high-resolution scanning confocal imaging.Its capability in sharper focusing and needle-like long focal depth should allow high-resolution lithography at violet or ultraviolet(UV)wavelength,however,this has never been experimentally demonstrated.As a proof of concept,in this paper SCLs operating at 405 nm(h-line)wavelength with smaller full-width-at-half-maximum focal spot and longer depth of focus than conventional Fresnel zone lens while maintaining controlled side lobes are designed for direct laser writing(DLW)lithography.Aluminum nitride(AlN)with a high refractive index and low loss in UVvisible range is used to fabricate nanopillar-based metasurfaces structure for the metalens.Grating arrays with improved pitch resolution are fabricated using the SCLs with sub-diffraction-limit focusing capability.The AlN-based metasurface for SCLs at short wavelength for DLW could extend further to UV or deep UV lithography and might be of great interest to both the research and industry applications.展开更多
Proppant transport within fractures is one of the most critical tasks in oil,gas and geothermal reservoir stimulation,as it largely determines the ultimate performance of the operating well.Proppant transport in rough...Proppant transport within fractures is one of the most critical tasks in oil,gas and geothermal reservoir stimulation,as it largely determines the ultimate performance of the operating well.Proppant transport in rough fracture networks is still a relatively new area of research and the associated transport mechanisms are still unclear.In this study,representative parameters of rough fracture surfaces formed by supercritical CO_(2) fracturing were used to generate a rough fracture network model based on a spectral synthesis method.Computational fluid dynamics(CFD)coupled with the discrete element method(DEM)was used to study proppant transport in this rough fracture network.To reveal the turning transport mechanism of proppants into branching fractures at the intersections of rough fracture networks,a comparison was made with the behavior within smooth fracture networks,and the effect of key pumping parameters on the proppant placement in a secondary fracture was analyzed.The results show that the transport behavior of proppant in rough fracture networks is very different from that of the one in the smooth fracture networks.The turning transport mechanisms of proppant into secondary fractures in rough fracture networks are gravity-driven sliding,high velocity fluid suspension,and fracture structure induction.Under the same injection conditions,supercritical CO_(2)with high flow Reynolds number still has a weaker ability to transport proppant into secondary fractures than water.Thickening of the supercritical CO_(2)needs to be increased beyond a certain value to have a significant effect on proppant carrying,and under the temperature and pressure conditions of this paper,it needs to be increased more than 20 times(about 0.94 m Pa s).Increasing the injection velocity and decreasing the proppant concentration facilitates the entry of proppant into the branching fractures,which in turn results in a larger stimulated reservoir volume.The results help to understand the proppant transport and placement process in rough fracture networks formed by reservoir stimulation,and provide a theoretical reference for the optimization of proppant pumping parameters in hydraulic fracturing.展开更多
Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introdu...Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introduce a nondestructive technique to achieve Si-O bond rearrangement,leading to plastic deformation and photoluminescence enhancement of amorphous silica nanoparticles using supercritical carbon dioxides in EtOH/H_(2)O solution under mild temperature.Specifically,plastic deformation is achieved by treating hollow mesoporous silica nanospheres using supercritical CO_(2)at 40°C under 20 MPa.Experimental and theoretical studies revealed the critical role of supercritical CO_(2)in the plastic deformation process,which can be intercalated into the hollow mesoporous silica nanospheres with anisotropic stresses and induces the rearrangement of Si-O bonds and transformation of ring structures.This work suggests a novel approach to engineer high-performance nano-silica glass components for numerous optical and photonic devices under mild condition.展开更多
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio...Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.展开更多
The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon diox...The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.展开更多
Consider the following McKean-Vlasov SDE:dXt=√2dWt+∫R_(d)K(t,Xt-y)μX_(t)(dy)dt,X_(0)=X,whereμXt stands forthedistributionof Xt and K(t,x):R_(+)×R^(d)→is a time-dependent divergence free vector field.Under th...Consider the following McKean-Vlasov SDE:dXt=√2dWt+∫R_(d)K(t,Xt-y)μX_(t)(dy)dt,X_(0)=X,whereμXt stands forthedistributionof Xt and K(t,x):R_(+)×R^(d)→is a time-dependent divergence free vector field.Under the assumption K∈L_(x)^(p)with weak solutions to the above SDE.As an application,we provide a new proof for the existence of weak solutions to 2D Navier-Stokes equations with measure as initial vorticity.展开更多
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor...Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.展开更多
As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav...As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.展开更多
Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing dow...Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature.展开更多
Based on the first and second laws of thermodynamics,the heat transfer and flow(thermohydraulic)characteristics of horizontal supercritical pressure CO_(2)(S-CO_(2))in a circular pipe under heating conditions were inv...Based on the first and second laws of thermodynamics,the heat transfer and flow(thermohydraulic)characteristics of horizontal supercritical pressure CO_(2)(S-CO_(2))in a circular pipe under heating conditions were investigated numerically.Heating flows in two different diameters(d)of 4 and 6 mm were simulated in pipes with pressures of 8 MPa,mass fluxes(G)of 300 and 400 kg/(m^(2)·s),and heat fluxes(q)of 50,75 and 100 kW/m^(2).In the d=4 mm pipe,the peak heat transfer coefficient(hb)was about 3 times higher than in the d=6 mm pipe,while the entropy production due to fluid friction in the 4 mm pipe was on average 1.1 times higher,and the entropy production due to heat transfer was on average about 67%lower.A 4 mm tube was employed to further evaluate the influence of the applied wall heat flux,the results demonstrated that the irreversibility due to heat transfer was on average more than 4 times higher when heat flux density was 100 kW/m^(2)than when the heat flux density was 50 kW/m^(2),while the peak of heat transfer coefficient increased by 1.4 times as q was decreased from 100 to 50 kW/m^(2).The effect of thermal acceleration was ignored,while the buoyancy effect resulted in secondary flow and significantly affected the flow and heat transfer features.The jet flows were found in the vicinity of the lower wall of the pipe,which made the two fields of velocity and temperature gradient more synergistic,leading to an enhancement in heat transfer in the vicinity of the upper wall.The aggravation of heat transfer resulted in high irreversibility of heat transfer in the cross-sectional area near the wall,while the local friction irreversibility was less affected by the buoyancy effect,and the distribution was uniform.The uneven distribution of thermophysical properties also confirmed that the enhanced heat transfer occurred near the wall area at the bottom of the pipe.展开更多
This paper models the giraffe’s jugular veins as a uniform collapsible tube from a rigid skull. The equations governing one-dimensional steady flow through such a tube for various conditions have been developed. The ...This paper models the giraffe’s jugular veins as a uniform collapsible tube from a rigid skull. The equations governing one-dimensional steady flow through such a tube for various conditions have been developed. The effects of inertial and inclination angles that have not been discussed previously have been included. It has been shown that different flows for a uniform tube (vein) are possible. However, this flow matches that of a jugular vein which is supercritical, and the steady solution has been given by the balance between the driving forces of gravity and the viscous resistance to the flow at the right atrium of the heart must be sub-critical for a fixed right-atrium pressure which means that an elastic jump is required to return the flow to sub-critical from the supercritical flow upstream this type of relationship gives rise to flow limitation at the same time given any right atrium fixed pressure there exists a maximum flow rate which when exceeded the boundary conditions of the flow do not hold boundary conditions at the right atrium are not satisfied hence making the steady flow impossible this mechanism of flow limitation is slightly different from the other one in that causes airways through forced expiration from the observation made it is clearly shown that there is an intravascular pressure difference with a change in height.展开更多
In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential inve...In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.展开更多
Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular ...Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular open channel is numerically studied by solving the Saint-Venant equations by means of an explicit backwards finite difference scheme. An Arrhenius-type dependence of the viscosity of the slag on temperature is assumed. To calculate that viscosity, four temperatures are considered, namely 1450˚C, 1500˚C, 1550˚C and 1600˚C. To study the dynamic response of the system, a half-sinusoidal pulse with duration of 5 s is imposed at the channel entrance. According to the numerical simulations, for all the temperatures considered, the slag flow in the channel for an angle of 5 degrees is supercritical in nature. However, for an angle of 1 degree, the flow is transcritical, that is, it presents a transition from subcritical to supercritical.展开更多
Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of se...Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of seed germination. The results showed thatas to the available rate of allelochemicals, the pressure and temperature of extraction were themost important factors. The allelochemicals of Chinese-fir root extracted by pure CO_2 and ethanolmixed with CO_2 have different allelopathic activities to seed germination, and the allelochemicalsextracted by ethanol mixed with CO_2 had stronger inhibitory effects on seed germination than thatextracted by pure CO_2.展开更多
Supercritical fluid extraction (SFE) of essential oil from dry rhizome ofLigusticum chuanxiong Hort was developed. GC/MS was used for the determination of the composition ofessential oil. Forty-four compounds were ide...Supercritical fluid extraction (SFE) of essential oil from dry rhizome ofLigusticum chuanxiong Hort was developed. GC/MS was used for the determination of the composition ofessential oil. Forty-four compounds were identified. The conventional extraction method wasconducted in parallel for comparison. The extracts were qualitatively compared by GC/MS. The yieldsof SFE and steam distillation-extraction were 4.16 % ( v/w) and 0.8 % ( v/w), respectively.Application of SFE of zessential oil from dry rhizome of Ligustiaan chuanxiong Hort was preferable.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.U21A2093)the Anhui Provincial Natural Science Foundation(No.2308085QE146)the National Natural Science Foundation of Jiangsu Province(No.BK20210894).
文摘The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment.
基金provided by Science and Technology Development Project of Jilin Province(No.20230101338JC)。
文摘The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.
基金National Science Fund for Excellent Young Scholars,Grant/Award Number:52022066。
文摘The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
文摘This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.
基金financially supported by A*STAR under IRG program(Grant No.A2083c0058)and the MTC Programmatic(Grant No.M22L1b0110)Z Wang thanks the GAP Funding(I21D1AG010)+4 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-049)the National Natural Science Foundation of China(Grant Nos.12134013 and 62322512)the National Key Research and Development Program of China(Grant No.2022YFB3607300)the CAS Pioneer Hundred Talents Program,and support from the University of Science and Technology of China’s Centre for MicroNanoscale Research and Fabrication.
文摘Supercritical lens(SCL)can break the diffraction limit in the far field and has been demonstrated for high-resolution scanning confocal imaging.Its capability in sharper focusing and needle-like long focal depth should allow high-resolution lithography at violet or ultraviolet(UV)wavelength,however,this has never been experimentally demonstrated.As a proof of concept,in this paper SCLs operating at 405 nm(h-line)wavelength with smaller full-width-at-half-maximum focal spot and longer depth of focus than conventional Fresnel zone lens while maintaining controlled side lobes are designed for direct laser writing(DLW)lithography.Aluminum nitride(AlN)with a high refractive index and low loss in UVvisible range is used to fabricate nanopillar-based metasurfaces structure for the metalens.Grating arrays with improved pitch resolution are fabricated using the SCLs with sub-diffraction-limit focusing capability.The AlN-based metasurface for SCLs at short wavelength for DLW could extend further to UV or deep UV lithography and might be of great interest to both the research and industry applications.
基金the support from the National Key Research and Development Program of China(Grant No.2022YFE0137200)the Natural Science Basic Research Program of Shaanxi Province,China(Program No.2024JC-YBQN-0381,2023JC-QN-0403)+2 种基金the Natural Science Basic Research Program of Shaanxi Province,China(Program No.2022JC-37)the Innovation Capability Support Program of Shaanxi(Program No.2023-CX-TD31)the Funded by Open Foundation of Shaanxi Key Laboratory of Carbon Dioxide Sequestration and Enhanced Oil Recovery,and the Youth Innovation Team of Shaanxi Universities。
文摘Proppant transport within fractures is one of the most critical tasks in oil,gas and geothermal reservoir stimulation,as it largely determines the ultimate performance of the operating well.Proppant transport in rough fracture networks is still a relatively new area of research and the associated transport mechanisms are still unclear.In this study,representative parameters of rough fracture surfaces formed by supercritical CO_(2) fracturing were used to generate a rough fracture network model based on a spectral synthesis method.Computational fluid dynamics(CFD)coupled with the discrete element method(DEM)was used to study proppant transport in this rough fracture network.To reveal the turning transport mechanism of proppants into branching fractures at the intersections of rough fracture networks,a comparison was made with the behavior within smooth fracture networks,and the effect of key pumping parameters on the proppant placement in a secondary fracture was analyzed.The results show that the transport behavior of proppant in rough fracture networks is very different from that of the one in the smooth fracture networks.The turning transport mechanisms of proppant into secondary fractures in rough fracture networks are gravity-driven sliding,high velocity fluid suspension,and fracture structure induction.Under the same injection conditions,supercritical CO_(2)with high flow Reynolds number still has a weaker ability to transport proppant into secondary fractures than water.Thickening of the supercritical CO_(2)needs to be increased beyond a certain value to have a significant effect on proppant carrying,and under the temperature and pressure conditions of this paper,it needs to be increased more than 20 times(about 0.94 m Pa s).Increasing the injection velocity and decreasing the proppant concentration facilitates the entry of proppant into the branching fractures,which in turn results in a larger stimulated reservoir volume.The results help to understand the proppant transport and placement process in rough fracture networks formed by reservoir stimulation,and provide a theoretical reference for the optimization of proppant pumping parameters in hydraulic fracturing.
基金the National Natural Science Foundation of China(Nos.51173170,21703207,21773216)the joint project from the Henan-Provincial and the China-National Natural Science Foundations(Project No.U2004208)
文摘Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introduce a nondestructive technique to achieve Si-O bond rearrangement,leading to plastic deformation and photoluminescence enhancement of amorphous silica nanoparticles using supercritical carbon dioxides in EtOH/H_(2)O solution under mild temperature.Specifically,plastic deformation is achieved by treating hollow mesoporous silica nanospheres using supercritical CO_(2)at 40°C under 20 MPa.Experimental and theoretical studies revealed the critical role of supercritical CO_(2)in the plastic deformation process,which can be intercalated into the hollow mesoporous silica nanospheres with anisotropic stresses and induces the rearrangement of Si-O bonds and transformation of ring structures.This work suggests a novel approach to engineer high-performance nano-silica glass components for numerous optical and photonic devices under mild condition.
基金Project supported by the National Natural Science Foundation of China (Nos.12002195 and 12372015)the National Science Fund for Distinguished Young Scholars of China (No.12025204)the Program of Shanghai Municipal Education Commission of China (No.2019-01-07-00-09-E00018)。
文摘Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.
基金supported by the National Natural Science Foundation of China (Nos.U22B6004,51974341)State Key Laboratory of Deep Oil and Gas (No.SKLDOG2024-ZYTS-14)the Fundamental Research Funds for the Central Universities (No.20CX06070A)。
文摘The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.
基金supported by NNSFC Grant of China(No.11731009,12131019)the DFG through the CRC 1283“Taming uncertainty and profiting from randomness and low regularity in analysis,stochastics and their applications”.
文摘Consider the following McKean-Vlasov SDE:dXt=√2dWt+∫R_(d)K(t,Xt-y)μX_(t)(dy)dt,X_(0)=X,whereμXt stands forthedistributionof Xt and K(t,x):R_(+)×R^(d)→is a time-dependent divergence free vector field.Under the assumption K∈L_(x)^(p)with weak solutions to the above SDE.As an application,we provide a new proof for the existence of weak solutions to 2D Navier-Stokes equations with measure as initial vorticity.
文摘Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.
基金financial support from the National Key Research and Development Program of China(2020YFA0710202)the National Natural Science Foundation of China(21978043,U1662130)+1 种基金Inner Mongolia University of Technology Scientific Research Initial Funding(DC2300001240)Talent Introduction Support Project of Inner Mongolia(DC2300001426).
文摘As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.
文摘Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature.
基金supported by the European Union’s Horizon 2020 Research and Innovation Programme Project(No.882628)(Guo,https://cinea.ec.europa.eu/programmes/horizon-europe_en)(acceseed on 08 October 2024),and the Fundamental Research Funds for the Central Universities(buctrc202406)(Guo,https://english.buct.edu.cn/)(accessed on 08 October 2024).
文摘Based on the first and second laws of thermodynamics,the heat transfer and flow(thermohydraulic)characteristics of horizontal supercritical pressure CO_(2)(S-CO_(2))in a circular pipe under heating conditions were investigated numerically.Heating flows in two different diameters(d)of 4 and 6 mm were simulated in pipes with pressures of 8 MPa,mass fluxes(G)of 300 and 400 kg/(m^(2)·s),and heat fluxes(q)of 50,75 and 100 kW/m^(2).In the d=4 mm pipe,the peak heat transfer coefficient(hb)was about 3 times higher than in the d=6 mm pipe,while the entropy production due to fluid friction in the 4 mm pipe was on average 1.1 times higher,and the entropy production due to heat transfer was on average about 67%lower.A 4 mm tube was employed to further evaluate the influence of the applied wall heat flux,the results demonstrated that the irreversibility due to heat transfer was on average more than 4 times higher when heat flux density was 100 kW/m^(2)than when the heat flux density was 50 kW/m^(2),while the peak of heat transfer coefficient increased by 1.4 times as q was decreased from 100 to 50 kW/m^(2).The effect of thermal acceleration was ignored,while the buoyancy effect resulted in secondary flow and significantly affected the flow and heat transfer features.The jet flows were found in the vicinity of the lower wall of the pipe,which made the two fields of velocity and temperature gradient more synergistic,leading to an enhancement in heat transfer in the vicinity of the upper wall.The aggravation of heat transfer resulted in high irreversibility of heat transfer in the cross-sectional area near the wall,while the local friction irreversibility was less affected by the buoyancy effect,and the distribution was uniform.The uneven distribution of thermophysical properties also confirmed that the enhanced heat transfer occurred near the wall area at the bottom of the pipe.
文摘This paper models the giraffe’s jugular veins as a uniform collapsible tube from a rigid skull. The equations governing one-dimensional steady flow through such a tube for various conditions have been developed. The effects of inertial and inclination angles that have not been discussed previously have been included. It has been shown that different flows for a uniform tube (vein) are possible. However, this flow matches that of a jugular vein which is supercritical, and the steady solution has been given by the balance between the driving forces of gravity and the viscous resistance to the flow at the right atrium of the heart must be sub-critical for a fixed right-atrium pressure which means that an elastic jump is required to return the flow to sub-critical from the supercritical flow upstream this type of relationship gives rise to flow limitation at the same time given any right atrium fixed pressure there exists a maximum flow rate which when exceeded the boundary conditions of the flow do not hold boundary conditions at the right atrium are not satisfied hence making the steady flow impossible this mechanism of flow limitation is slightly different from the other one in that causes airways through forced expiration from the observation made it is clearly shown that there is an intravascular pressure difference with a change in height.
文摘In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.
文摘Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular open channel is numerically studied by solving the Saint-Venant equations by means of an explicit backwards finite difference scheme. An Arrhenius-type dependence of the viscosity of the slag on temperature is assumed. To calculate that viscosity, four temperatures are considered, namely 1450˚C, 1500˚C, 1550˚C and 1600˚C. To study the dynamic response of the system, a half-sinusoidal pulse with duration of 5 s is imposed at the channel entrance. According to the numerical simulations, for all the temperatures considered, the slag flow in the channel for an angle of 5 degrees is supercritical in nature. However, for an angle of 1 degree, the flow is transcritical, that is, it presents a transition from subcritical to supercritical.
基金This paper was supported by Natural Science Foundation of Fujian Province (B0010020)
文摘Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of seed germination. The results showed thatas to the available rate of allelochemicals, the pressure and temperature of extraction were themost important factors. The allelochemicals of Chinese-fir root extracted by pure CO_2 and ethanolmixed with CO_2 have different allelopathic activities to seed germination, and the allelochemicalsextracted by ethanol mixed with CO_2 had stronger inhibitory effects on seed germination than thatextracted by pure CO_2.
文摘Supercritical fluid extraction (SFE) of essential oil from dry rhizome ofLigusticum chuanxiong Hort was developed. GC/MS was used for the determination of the composition ofessential oil. Forty-four compounds were identified. The conventional extraction method wasconducted in parallel for comparison. The extracts were qualitatively compared by GC/MS. The yieldsof SFE and steam distillation-extraction were 4.16 % ( v/w) and 0.8 % ( v/w), respectively.Application of SFE of zessential oil from dry rhizome of Ligustiaan chuanxiong Hort was preferable.