Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect...Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material.展开更多
Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally...Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally developed on a porous all-elastomer metafabric for efficient passive daytime radiative cooling(PDRC) and human electrophysiological monitoring. The cooling characteristics are realized through the homogeneous impregnation of polytetrafluoroethylene microparticles in the styrene–ethylene–butylene–styrene fibers, and the rational regulation of microporosity in SEBS/PTFE metafabrics, thus synergistically backscatter ultraviolet–visible–near-infrared light(maximum reflectance over 98.0%) to minimize heat absorption while efficiently emit human-body midinfrared radiation to the sky. As a result, the developed PDRC metafabric achieves approximately 17℃ cooling effects in an outdoor daytime environment and completely retains its passive cooling performance even under 50% stretching. Further, high-fidelity electrophysiological monitoring capability is also implemented in the breathable and skin-conformal metafabric through liquid metal printing, enabling the accurate acquisition of human electrocardiograph, surface electromyogram, and electroencephalograph signals for comfortable and lengthy health regulation. Hence, the fabricated superelastic PDRC metafabric opens a new avenue for the development of body-comfortable electronics and low-carbon wearing technologies.展开更多
Effects of thermomechanical treatment of cold rolling followed by annealing on microstructure and superelastic behavior of the Ni50Ti50 shape memory alloy were studied.Several specimens were produced by copper boat va...Effects of thermomechanical treatment of cold rolling followed by annealing on microstructure and superelastic behavior of the Ni50Ti50 shape memory alloy were studied.Several specimens were produced by copper boat vacuum induction melting.The homogenized specimens were hot rolled and annealed at 900°C.Thereafter,annealed specimens were subjected to cold rolling with different thickness reductions up to 70%.Transmission electron microscopy revealed that the severe cold rolling led to the formation of a mixed microstructure consisting of nanocrystalline and amorphous phases in Ni50Ti50 alloy.After annealing at 400°C for 1 h,the amorphous phase formed in the cold-rolled specimens was crystallized and a nanocrystalline structure formed.Results showed that with increasing thickness reduction during cold rolling,the recoverable strain of Ni50Ti50 alloy was increased during superelastic experiments such that the 70%cold rolled-annealed specimen exhibited about 12%of recoverable strain.Moreover,with increasing thickness reduction,the critical stress for stress-induced martensitic transformation was increased.It is noteworthy that in the 70%cold rolled-annealed specimen,the damping capacity was measured to be 28 J/cm3 that is significantly higher than that of commercial NiTi alloys.展开更多
Elemental titanium(Ti)and nickel(Ni)powders were consolidated by spark plasma sintering(SPS)to fabricate Ti-51%Ni(mole fraction)shape-memory alloys(SMAs).The objective of this study is to enhance the superelasticity o...Elemental titanium(Ti)and nickel(Ni)powders were consolidated by spark plasma sintering(SPS)to fabricate Ti-51%Ni(mole fraction)shape-memory alloys(SMAs).The objective of this study is to enhance the superelasticity of SPS produced Ti-Ni alloy using free forging as a secondary process.Products from two processes(with and without free forging)were compared in terms of microstructure,transformation temperature and superelasticity.The results showed that,free forging effectively improved the tensile and shape-memory properties.Ductility increased from 6.8%to 9.2%after forging.The maximum strain during superelasticity increased from 5%to 7.5%and the strain recovery rate increased from 72%to 92%.The microstructure of produced Ti-51%Ni SMA consists of the cubic austenite(B2)matrix,monoclinic martensite(B19′),secondary phases(Ti3Ni4,Ti2Ni and TiNi3)and oxides(Ti4Ni2O and Ti3O5).There was a shift towards higher temperatures in the martensitic transformation of free forged specimen(aged at 500°C)due to the decrease in Ni content of B2 matrix.This is related to the presence of Ti3Ni4 precipitates,which were observed using transmission electron microscope(TEM).In conclusion,free forging could improve superelasticity and mechanical properties of Ti-51%Ni SMA.展开更多
Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy micros...Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy microstructure evolved through six basic stages including stress-induced martensite transformation and plastic deformation of martensite, deformation twinning, accumulation of dislocations along twin and variant boundaries in martensite, nanocrystallization, amorphization and reverse transformation of martensite to austenite. After annealing at 400 ℃ for 1 h, the amorphous phase formed in the cold-rolled specimens was completely crystallized and an entirely nanocrystalline structure was achieved. The value of stress level of the upper plateau in this nanocrystalline alloy was measured as high as 730 MPa which was significantly higher than that of the coarse-grained Ni50Ti50 and Ti50Ni48Co2 alloys. Moreover, the nanocrystalline Ti50Ni48Co2 alloy had a high damping capacity and considerable efficiency for energy storage.展开更多
The superelastic behaviors of different isothermal treated Cu-13.SAl-4.ONi (mass fraction) single crystals were studied by applying tensile stress along <001> of the d phase. The different isothermal specimens h...The superelastic behaviors of different isothermal treated Cu-13.SAl-4.ONi (mass fraction) single crystals were studied by applying tensile stress along <001> of the d phase. The different isothermal specimens have different superelastic behavior due to the change of the ratio of stress-induced r1 and β1. The superelasticity of r1 phase tends to that of g; phase with cycling. Typical stabilization of stress-induced martensite above Ap results in residual deformation. Due to the reverse transformation of 7I, there is a deviation of pseudo-yield stress from linear relation with temperature at relatively low stress.展开更多
TiNi shape memory alloy thin films were deposited by using a RF magnetron sputtering apparatus. The transformation and shape memory characteristics of the thin films have been investigated by using DSC and tensile tes...TiNi shape memory alloy thin films were deposited by using a RF magnetron sputtering apparatus. The transformation and shape memory characteristics of the thin films have been investigated by using DSC and tensile tests. After aging, perfect shape memory effect and superelasticity were achieved in TiNi thin films.展开更多
The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using thes...The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using these three methods were compared, and the factors that influence superelasticity were described.展开更多
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C ...The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.展开更多
Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is inv...Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is investigated and compared to a new generation of shape memory alloys, i.e., 60NiTi. Only limited amount of work has been done to investigate the dependency of superelasticity on loading rate of TiNi under localized compressive loads, but much work is directed towards understanding the effect of strain rate on tensile properties. Understanding the superelastic behavior helps to employ superelastic alloys in applications where high impact loading is expected as in bearings and gears. In the present study, it is found that dent resistance of Ti-Ni alloy is not significantly affected by loading rate (within the employed loading conditions). It has also been found that new-generation 60NiTi alloy exhibits superior wear and dent resistance, as well as higher hardness compared to equiatomic TiNi.展开更多
The influence of a small amount of α phase in β′ matrix on shape memory effect and superelasticity of CuZnAl shape memory alloy has been studied systematically.It has been found that transformation temperature can ...The influence of a small amount of α phase in β′ matrix on shape memory effect and superelasticity of CuZnAl shape memory alloy has been studied systematically.It has been found that transformation temperature can be adjusted in a large scale by controlling the amount of α phase, meanwhile,shape memory effect and superelasticity do not decrease obviously when there exists a small amount of α phase.Based on the optical and trans- mission electron microscopy observation,the influ- ence of α phase on shape memory effect and superelasticity has been discussed.展开更多
Ni50Mn25Ga20Fe5 ferromagnetic shape memory alloy microwires with diameters of^30-50μm and grain sizes of^2-5μm were prepared by melt-extraction technique.A step-wise chemical ordering annealing was carried out to im...Ni50Mn25Ga20Fe5 ferromagnetic shape memory alloy microwires with diameters of^30-50μm and grain sizes of^2-5μm were prepared by melt-extraction technique.A step-wise chemical ordering annealing was carried out to improve the superelasticity strain and recovery ratio which were hampered by the internal stress,compositional inhomogeneity,and high-density defects in the as-extracted Ni50Mn25Ga20Fe5 microwires.The annealed microwires exhibited enhanced atomic ordering degree,narrow thermal hysteresis,and high saturation magnetization under a low magnetic field.As a result,the annealed microwire showed decreased superelastic critical stress,improved reversibility,and a high superelastic strain(1.9%)with a large recovery ratio(>96%).This kind of filamentous material with superior superelastic effects may be promising materials for minor-devices.展开更多
Ti50.6Pd30Ni19.4 and Ti51Pd28Ni21 (Ce) alloys have been prepared under various temperatures for long time annealing. Differential scanning calorimetery (DSC), X-ray diffraction (XRD) and tensile test were employed to ...Ti50.6Pd30Ni19.4 and Ti51Pd28Ni21 (Ce) alloys have been prepared under various temperatures for long time annealing. Differential scanning calorimetery (DSC), X-ray diffraction (XRD) and tensile test were employed to investigate the phase transformation behavior and superelasticity of the alloys. It has been found that the phase transformation temperature of Ti50.6Pd30Ni19.4 is about 40C higher than that of Ti51Pd28Ni21(Ce), and do not change much with different annealed temperature. Obvious superelasticity is retained in Ti50.6Pd30Ni19.4 alloy annealed at 400C for 18 h, and annealing at higher temperature shows a deterioration of this property. The Ce addition in TisiPd28Ni2i alloy significantly delays recrystallization, increases yied strength and elastic modulus, but the superelasticity is poor.展开更多
By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress induced martensite (SIM) of Cu 13.4Al 4.0Ni(mass fraction, %) single crystals were studied. The results show ...By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress induced martensite (SIM) of Cu 13.4Al 4.0Ni(mass fraction, %) single crystals were studied. The results show that the pseudo yield stress decreases with the increase of cycling number, and keeping load isothermally has an effect on stabilization of SIM. Previous thermal cycling between ( M s-20 ℃) and ( A f+20 ℃) promotes the superelasticity and the stabilization of SIM as well; the pre thermal cycling also reduces the pseudo yield stress. However, once the stabilization of SIM is produced, it can be destabilized by either the afterwards thermal cooling heating cycling or load and immediately unload cycling in ( A f~ M d). Isothermal treatment in ( A f~ M d) brings restabilization of SIM. The maximum superelastic value from β → β ′ 1(18 R ) is 9% for the studied single crystal. When test temperature is in A f~( A f+50 ℃) and stress is in 0~350 MPa, the superelastic behavior exist. [展开更多
In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al(wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transfo...In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al(wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy(SEM) and a dynamic mechanical analyzer(DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.展开更多
Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply period...Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply periodic minimal surface(TPMS)lattice structures with different unit sizes and volume fractions on the manufacturing viability,compressive mechanical response,superelasticity and heating recovery properties of CuAlMn SMAs.The results show that the increased specific surface area of the lattice structure leads to increased powder adhesion,making the manufacturability proportional to the unit size and volume fraction.The compressive response of the CuAlMn SMAs Gyroid TPMS lattice structure is negatively correlated with the unit size and positively correlated with the volume fraction.The superelastic recovery of all CuAlMn SMAs with Gyroid TPMS lattice structures is within 5%when the cyclic cumulative strain is set to be 10%.The lattice structure shows the maximum superelasticity when the unit size is 3.00 mm and the volume fraction is 12%,and after heating recovery,the total recovery strain increases as the volume fraction increases.This study introduces a new strategy to enhance the superelastic properties and expand the applications of CuAlMn SMAs in soft robotics,medical equipment,aerospace and other fields.展开更多
Functional stability of superelasticity is crucial for practical applications of shape memory alloys.It is degraded by a Lüders-like deformation with elevated local stress concentration under tensile load.By incr...Functional stability of superelasticity is crucial for practical applications of shape memory alloys.It is degraded by a Lüders-like deformation with elevated local stress concentration under tensile load.By increasing the degree of solute supersaturation and applying appropriate thermomechanical treatments,a Ti-Ni alloy with nanocrystallinity and dispersed nanoprecipitates is obtained.In contrast to conventional Ti-Ni alloys,the superelasticity in the target alloy is accompanied by homogeneous deformation due to the sluggish stress-induced martensitic transformation.The alloy thus shows a fully recoverable strain of 6%under tensile stress over 1 GPa and a large adiabatic temperature decrease of 13.1 K under tensile strain of 4.5%at room temperature.Moreover,both superelasticity and elastocaloric effect exhibit negligible degradation in response to applied strain of 4%during cycling.We attribute the improved functional stability to low dislocation activity resulting from the suppression of localized deformation and the combined strengthening effect of nanocrystalline structure and nanoprecipitates.Thus,the design of such a microstructure enabling homogeneous deformation provides a recipe for stable superelasticity and elastocaloric effect.展开更多
NiTi-based shape memory alloys(SMAs)are considered as cutting-edge intelligent functional materials.However,it remains a great challenge to obtain ultrafine-grained(UFGed)bulk materials with mm-scale size as well as o...NiTi-based shape memory alloys(SMAs)are considered as cutting-edge intelligent functional materials.However,it remains a great challenge to obtain ultrafine-grained(UFGed)bulk materials with mm-scale size as well as outstanding superelastic properties.Here,UFGed bulk Ti_(35)Zr_(15)Ni_(35)Cu_(15)NiTi-based SMA is successfully prepared via spark plasma sintering of amorphous ribbon precursor at different sintering temperatures,and microstructural evolution and superelastic properties are symmetrically investigated.It is found that its grain size ranges from UFG to micro-grain with increased sintering temperature regard-less of the predominant B2 matrix in all bulk samples.Interestingly,the orientation relationships between B2 matrix and nano-scale fcc(Ti,Zr)_(2)Ni precipitate evolve from coherent to incoherent.Consequently,the UFGed samples exhibit perfect superelasticity with the high recoverable strain of∼5.8%,the stable recov-ery rate above 99%,and the great critical stress inducing martensitic transformation higher than 1 GPa,far superior to the corresponding ones of suction-cast micro-grained TiZrNiCu SMAs.Fundamentally,the perfect superelasticity is attributed to the good resistance to dislocation slip or grain boundary slip by residual nano-scale amorphous phase or secondary phase of coherent and semi-coherent fcc(Ti,Zr)_(2)Ni precipitate.In addition,the gentle superelastic plateau is associated to the favorable transfer stress and the strong ability to accommodate dislocation movement,which is generated by the coherent interface between nano-scale fcc(Ti,Zr)_(2)Ni and UFGed B2 matrix.These results suggest that spark plasma sintering of amorphous alloy precursor is a feasible route to obtaining excellent superelasticity in NiTi-based SMAs.展开更多
For the first time,this work comprehensively studied the effectiveness of precipitation hardening achieved by aging treatment in improving the tensile superelasticity of NiTi alloys fabricated by elec-tron beam wire-f...For the first time,this work comprehensively studied the effectiveness of precipitation hardening achieved by aging treatment in improving the tensile superelasticity of NiTi alloys fabricated by elec-tron beam wire-feed additive manufacturing(EBAM),which possesses inherent advantages in producing dense and oxidation-free structures.Aging treatments under three temperatures(450,350,and 250℃)and different durations were conducted,and the resultant performance of tensile superelasticity,together with the corresponding evolution of precipitation and phase transformation behavior were investigated for the EBAM-fabricated NiTi alloys.Results showed that by appropriate aging treatment,EBAM fabricated NiTi alloys could achieve excellent recovery rates of approximately 95%and 90%after the 1st and 10th load/unload cycle for a maximum tensile strain of 6%,which were almost the highest achieved so far by AM processed NiTi alloys and close to those of some conventional NiTi alloys.The improvement of tensile superelasticity benefited from the fine and dispersive Ni4Ti3 precipitates,which could be introduced by aging at 350℃ for 4 h or at 250℃ for 200 h.Moreover,the large amount of Ni4Ti3 precipitates would promote the intermediate R-phase transformation and bring a two-stage or three-stage transformation sequence,which depended on whether the distribution of the precipitation was homogeneous or not.This work could provide guidance for the production of NiTi alloys with good tensile superelasticity by EBAM or other additive manufacturing processes.展开更多
The demand for titanium alloys simultaneously having high elastic admissible strain and large recovery strain for bio-implant applications is increasing.Ni-free Ti-based shape memory alloys are promising candidates fo...The demand for titanium alloys simultaneously having high elastic admissible strain and large recovery strain for bio-implant applications is increasing.Ni-free Ti-based shape memory alloys are promising candidates for obtaining the required multifunctional properties.In this study,a wide content range of(0-15)wt%of low-cost,toxicity-free,and high-biocompatible Sn element was added to the Ti-8Mo(wt%)alloy to study its effect on the superelastic recovery and mechanical properties of biomedical Ti-Mo-Sn alloys.By tailoring Sn content,desired multifunctional properties of high elastic admissible strain and room temperature superelasticity were achieved in the studied Ti-Mo-Sn alloys.It was found that the increase in Sn content stabilized theβphase and a singleβphase was obtained at room temperature in Ti-8Mo-(13,15)Sn alloys.The addition of Sn modified the lattice parameters of theα″martensite andβphase and affected the lattice deformation stain ofβ→α″.The lattice deformation strain along the[011]βdirection was found to be decreased by-0.26%/wt%Sn.The room temperature superelasticity with a recovery strain of 3.1%and an elastic admissible strain of 1%was obtained in the Ti-8Mo-13Sn alloy.As Sn content increased to 15 wt%,a high elastic admissible strain of 1.56%and a recovery strain of 2.0%were obtained.These Ti-Mo-Sn alloys with excellent multifunctional properties are promising candidates for bio-implant applications.展开更多
基金Project supported by the Science Fund of the Key Laboratory of Cryogenic Science and Technology(Grant Nos.CRYO20230203 and CRYO202106)the National Natural Science Foundation of China(Grant Nos.51872299 and 52071223)the National Key Research and Development Program of China(Grant No.2019YFA0704904)。
文摘Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material.
基金financially supported by the National Natural Science Foundation of China (21875033, 52161135302)the Research Foundation Flanders (G0F2322N)+4 种基金the China Postdoctoral Science Foundation (2022M711355)the Natural Science Foundation of Jiangsu Province (BK20221540)the Shanghai Scientific and Technological Innovation Project (18JC1410600)the Program of the Shanghai Academic Research Leader (17XD1400100)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_2317)。
文摘Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally developed on a porous all-elastomer metafabric for efficient passive daytime radiative cooling(PDRC) and human electrophysiological monitoring. The cooling characteristics are realized through the homogeneous impregnation of polytetrafluoroethylene microparticles in the styrene–ethylene–butylene–styrene fibers, and the rational regulation of microporosity in SEBS/PTFE metafabrics, thus synergistically backscatter ultraviolet–visible–near-infrared light(maximum reflectance over 98.0%) to minimize heat absorption while efficiently emit human-body midinfrared radiation to the sky. As a result, the developed PDRC metafabric achieves approximately 17℃ cooling effects in an outdoor daytime environment and completely retains its passive cooling performance even under 50% stretching. Further, high-fidelity electrophysiological monitoring capability is also implemented in the breathable and skin-conformal metafabric through liquid metal printing, enabling the accurate acquisition of human electrocardiograph, surface electromyogram, and electroencephalograph signals for comfortable and lengthy health regulation. Hence, the fabricated superelastic PDRC metafabric opens a new avenue for the development of body-comfortable electronics and low-carbon wearing technologies.
文摘Effects of thermomechanical treatment of cold rolling followed by annealing on microstructure and superelastic behavior of the Ni50Ti50 shape memory alloy were studied.Several specimens were produced by copper boat vacuum induction melting.The homogenized specimens were hot rolled and annealed at 900°C.Thereafter,annealed specimens were subjected to cold rolling with different thickness reductions up to 70%.Transmission electron microscopy revealed that the severe cold rolling led to the formation of a mixed microstructure consisting of nanocrystalline and amorphous phases in Ni50Ti50 alloy.After annealing at 400°C for 1 h,the amorphous phase formed in the cold-rolled specimens was crystallized and a nanocrystalline structure formed.Results showed that with increasing thickness reduction during cold rolling,the recoverable strain of Ni50Ti50 alloy was increased during superelastic experiments such that the 70%cold rolled-annealed specimen exhibited about 12%of recoverable strain.Moreover,with increasing thickness reduction,the critical stress for stress-induced martensitic transformation was increased.It is noteworthy that in the 70%cold rolled-annealed specimen,the damping capacity was measured to be 28 J/cm3 that is significantly higher than that of commercial NiTi alloys.
基金the Ministry of Higher Education of Malaysia for the Malaysian International Scholarship and research funding under FRGS vote No. R.J13000.7824.4F810
文摘Elemental titanium(Ti)and nickel(Ni)powders were consolidated by spark plasma sintering(SPS)to fabricate Ti-51%Ni(mole fraction)shape-memory alloys(SMAs).The objective of this study is to enhance the superelasticity of SPS produced Ti-Ni alloy using free forging as a secondary process.Products from two processes(with and without free forging)were compared in terms of microstructure,transformation temperature and superelasticity.The results showed that,free forging effectively improved the tensile and shape-memory properties.Ductility increased from 6.8%to 9.2%after forging.The maximum strain during superelasticity increased from 5%to 7.5%and the strain recovery rate increased from 72%to 92%.The microstructure of produced Ti-51%Ni SMA consists of the cubic austenite(B2)matrix,monoclinic martensite(B19′),secondary phases(Ti3Ni4,Ti2Ni and TiNi3)and oxides(Ti4Ni2O and Ti3O5).There was a shift towards higher temperatures in the martensitic transformation of free forged specimen(aged at 500°C)due to the decrease in Ni content of B2 matrix.This is related to the presence of Ti3Ni4 precipitates,which were observed using transmission electron microscope(TEM).In conclusion,free forging could improve superelasticity and mechanical properties of Ti-51%Ni SMA.
文摘Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy microstructure evolved through six basic stages including stress-induced martensite transformation and plastic deformation of martensite, deformation twinning, accumulation of dislocations along twin and variant boundaries in martensite, nanocrystallization, amorphization and reverse transformation of martensite to austenite. After annealing at 400 ℃ for 1 h, the amorphous phase formed in the cold-rolled specimens was completely crystallized and an entirely nanocrystalline structure was achieved. The value of stress level of the upper plateau in this nanocrystalline alloy was measured as high as 730 MPa which was significantly higher than that of the coarse-grained Ni50Ti50 and Ti50Ni48Co2 alloys. Moreover, the nanocrystalline Ti50Ni48Co2 alloy had a high damping capacity and considerable efficiency for energy storage.
文摘The superelastic behaviors of different isothermal treated Cu-13.SAl-4.ONi (mass fraction) single crystals were studied by applying tensile stress along <001> of the d phase. The different isothermal specimens have different superelastic behavior due to the change of the ratio of stress-induced r1 and β1. The superelasticity of r1 phase tends to that of g; phase with cycling. Typical stabilization of stress-induced martensite above Ap results in residual deformation. Due to the reverse transformation of 7I, there is a deviation of pseudo-yield stress from linear relation with temperature at relatively low stress.
文摘TiNi shape memory alloy thin films were deposited by using a RF magnetron sputtering apparatus. The transformation and shape memory characteristics of the thin films have been investigated by using DSC and tensile tests. After aging, perfect shape memory effect and superelasticity were achieved in TiNi thin films.
文摘The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using these three methods were compared, and the factors that influence superelasticity were described.
基金financially supported by the National Natural Science Foundation of China (Nos. 51574027 and 51604206)the Financial Support from the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-22)
文摘The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.
文摘Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is investigated and compared to a new generation of shape memory alloys, i.e., 60NiTi. Only limited amount of work has been done to investigate the dependency of superelasticity on loading rate of TiNi under localized compressive loads, but much work is directed towards understanding the effect of strain rate on tensile properties. Understanding the superelastic behavior helps to employ superelastic alloys in applications where high impact loading is expected as in bearings and gears. In the present study, it is found that dent resistance of Ti-Ni alloy is not significantly affected by loading rate (within the employed loading conditions). It has also been found that new-generation 60NiTi alloy exhibits superior wear and dent resistance, as well as higher hardness compared to equiatomic TiNi.
文摘The influence of a small amount of α phase in β′ matrix on shape memory effect and superelasticity of CuZnAl shape memory alloy has been studied systematically.It has been found that transformation temperature can be adjusted in a large scale by controlling the amount of α phase, meanwhile,shape memory effect and superelasticity do not decrease obviously when there exists a small amount of α phase.Based on the optical and trans- mission electron microscopy observation,the influ- ence of α phase on shape memory effect and superelasticity has been discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51701099,51801044,and 51671071)the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2019E091)+1 种基金Fundamental Research Funds in Heilongjiang Provincial Universities,China (Grant No. 135409320)the help of Technology Innovation Center of Agricultural Multi-Dimensional Sensor Information Perception,Heilongjiang Province.
文摘Ni50Mn25Ga20Fe5 ferromagnetic shape memory alloy microwires with diameters of^30-50μm and grain sizes of^2-5μm were prepared by melt-extraction technique.A step-wise chemical ordering annealing was carried out to improve the superelasticity strain and recovery ratio which were hampered by the internal stress,compositional inhomogeneity,and high-density defects in the as-extracted Ni50Mn25Ga20Fe5 microwires.The annealed microwires exhibited enhanced atomic ordering degree,narrow thermal hysteresis,and high saturation magnetization under a low magnetic field.As a result,the annealed microwire showed decreased superelastic critical stress,improved reversibility,and a high superelastic strain(1.9%)with a large recovery ratio(>96%).This kind of filamentous material with superior superelastic effects may be promising materials for minor-devices.
基金This work is sponsored by the Science and Technology Commission of the Shanghai Municipal Government, No. OOJC14055.
文摘Ti50.6Pd30Ni19.4 and Ti51Pd28Ni21 (Ce) alloys have been prepared under various temperatures for long time annealing. Differential scanning calorimetery (DSC), X-ray diffraction (XRD) and tensile test were employed to investigate the phase transformation behavior and superelasticity of the alloys. It has been found that the phase transformation temperature of Ti50.6Pd30Ni19.4 is about 40C higher than that of Ti51Pd28Ni21(Ce), and do not change much with different annealed temperature. Obvious superelasticity is retained in Ti50.6Pd30Ni19.4 alloy annealed at 400C for 18 h, and annealing at higher temperature shows a deterioration of this property. The Ce addition in TisiPd28Ni2i alloy significantly delays recrystallization, increases yied strength and elastic modulus, but the superelasticity is poor.
文摘By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress induced martensite (SIM) of Cu 13.4Al 4.0Ni(mass fraction, %) single crystals were studied. The results show that the pseudo yield stress decreases with the increase of cycling number, and keeping load isothermally has an effect on stabilization of SIM. Previous thermal cycling between ( M s-20 ℃) and ( A f+20 ℃) promotes the superelasticity and the stabilization of SIM as well; the pre thermal cycling also reduces the pseudo yield stress. However, once the stabilization of SIM is produced, it can be destabilized by either the afterwards thermal cooling heating cycling or load and immediately unload cycling in ( A f~ M d). Isothermal treatment in ( A f~ M d) brings restabilization of SIM. The maximum superelastic value from β → β ′ 1(18 R ) is 9% for the studied single crystal. When test temperature is in A f~( A f+50 ℃) and stress is in 0~350 MPa, the superelastic behavior exist. [
基金financial support of the National High Technology Research and Development Program of China (No. 2009AA03Z113)the National Science Foundation of China (No. 51471025)
文摘In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al(wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy(SEM) and a dynamic mechanical analyzer(DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.
基金supported by the National Natural Science Foundation of China(No.51974028)the Fundamental Research Funds for the Central Universities(No.2021JCCXJD01)the Key R&D and transformation projects in Qinghai Province(No.2023-HZ-801).
文摘Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply periodic minimal surface(TPMS)lattice structures with different unit sizes and volume fractions on the manufacturing viability,compressive mechanical response,superelasticity and heating recovery properties of CuAlMn SMAs.The results show that the increased specific surface area of the lattice structure leads to increased powder adhesion,making the manufacturability proportional to the unit size and volume fraction.The compressive response of the CuAlMn SMAs Gyroid TPMS lattice structure is negatively correlated with the unit size and positively correlated with the volume fraction.The superelastic recovery of all CuAlMn SMAs with Gyroid TPMS lattice structures is within 5%when the cyclic cumulative strain is set to be 10%.The lattice structure shows the maximum superelasticity when the unit size is 3.00 mm and the volume fraction is 12%,and after heating recovery,the total recovery strain increases as the volume fraction increases.This study introduces a new strategy to enhance the superelastic properties and expand the applications of CuAlMn SMAs in soft robotics,medical equipment,aerospace and other fields.
基金the support of National Key Research and Development Program of China(2021YFB3802104)National Natural Science Foundation of China(Grant Nos.51931004,52173228,52271190 and 51571156)the 111 project 2.0(BP2018008)。
文摘Functional stability of superelasticity is crucial for practical applications of shape memory alloys.It is degraded by a Lüders-like deformation with elevated local stress concentration under tensile load.By increasing the degree of solute supersaturation and applying appropriate thermomechanical treatments,a Ti-Ni alloy with nanocrystallinity and dispersed nanoprecipitates is obtained.In contrast to conventional Ti-Ni alloys,the superelasticity in the target alloy is accompanied by homogeneous deformation due to the sluggish stress-induced martensitic transformation.The alloy thus shows a fully recoverable strain of 6%under tensile stress over 1 GPa and a large adiabatic temperature decrease of 13.1 K under tensile strain of 4.5%at room temperature.Moreover,both superelasticity and elastocaloric effect exhibit negligible degradation in response to applied strain of 4%during cycling.We attribute the improved functional stability to low dislocation activity resulting from the suppression of localized deformation and the combined strengthening effect of nanocrystalline structure and nanoprecipitates.Thus,the design of such a microstructure enabling homogeneous deformation provides a recipe for stable superelasticity and elastocaloric effect.
基金This work was financially supported by the Key Basic and Applied Research Program of Guangdong Province(No.2019B030302010)the National Natural Science Foundation of China(No.U19A2085)+1 种基金the Key-Area Research and Develop-ment Program of Guangdong Province(No.2020B090923001)Special thanks to Sinoma Institute of Materials Research(Guang Zhou)Co.,Ltd.(SIMR)for its support in TEM testing.
文摘NiTi-based shape memory alloys(SMAs)are considered as cutting-edge intelligent functional materials.However,it remains a great challenge to obtain ultrafine-grained(UFGed)bulk materials with mm-scale size as well as outstanding superelastic properties.Here,UFGed bulk Ti_(35)Zr_(15)Ni_(35)Cu_(15)NiTi-based SMA is successfully prepared via spark plasma sintering of amorphous ribbon precursor at different sintering temperatures,and microstructural evolution and superelastic properties are symmetrically investigated.It is found that its grain size ranges from UFG to micro-grain with increased sintering temperature regard-less of the predominant B2 matrix in all bulk samples.Interestingly,the orientation relationships between B2 matrix and nano-scale fcc(Ti,Zr)_(2)Ni precipitate evolve from coherent to incoherent.Consequently,the UFGed samples exhibit perfect superelasticity with the high recoverable strain of∼5.8%,the stable recov-ery rate above 99%,and the great critical stress inducing martensitic transformation higher than 1 GPa,far superior to the corresponding ones of suction-cast micro-grained TiZrNiCu SMAs.Fundamentally,the perfect superelasticity is attributed to the good resistance to dislocation slip or grain boundary slip by residual nano-scale amorphous phase or secondary phase of coherent and semi-coherent fcc(Ti,Zr)_(2)Ni precipitate.In addition,the gentle superelastic plateau is associated to the favorable transfer stress and the strong ability to accommodate dislocation movement,which is generated by the coherent interface between nano-scale fcc(Ti,Zr)_(2)Ni and UFGed B2 matrix.These results suggest that spark plasma sintering of amorphous alloy precursor is a feasible route to obtaining excellent superelasticity in NiTi-based SMAs.
基金This work was financially supported by the Tribology Science Fund of the State Key Laboratory of Tribology(No.SKLT2022C20)the National Natural Science Foundation of China(Nos.51875309 and 51905310)the Natural Science Foundation of Shandong Province(No.ZR2020YQ39).
文摘For the first time,this work comprehensively studied the effectiveness of precipitation hardening achieved by aging treatment in improving the tensile superelasticity of NiTi alloys fabricated by elec-tron beam wire-feed additive manufacturing(EBAM),which possesses inherent advantages in producing dense and oxidation-free structures.Aging treatments under three temperatures(450,350,and 250℃)and different durations were conducted,and the resultant performance of tensile superelasticity,together with the corresponding evolution of precipitation and phase transformation behavior were investigated for the EBAM-fabricated NiTi alloys.Results showed that by appropriate aging treatment,EBAM fabricated NiTi alloys could achieve excellent recovery rates of approximately 95%and 90%after the 1st and 10th load/unload cycle for a maximum tensile strain of 6%,which were almost the highest achieved so far by AM processed NiTi alloys and close to those of some conventional NiTi alloys.The improvement of tensile superelasticity benefited from the fine and dispersive Ni4Ti3 precipitates,which could be introduced by aging at 350℃ for 4 h or at 250℃ for 200 h.Moreover,the large amount of Ni4Ti3 precipitates would promote the intermediate R-phase transformation and bring a two-stage or three-stage transformation sequence,which depended on whether the distribution of the precipitation was homogeneous or not.This work could provide guidance for the production of NiTi alloys with good tensile superelasticity by EBAM or other additive manufacturing processes.
基金the Korean Ministry of Trade,Industry and Energy(Grant No.200116572).
文摘The demand for titanium alloys simultaneously having high elastic admissible strain and large recovery strain for bio-implant applications is increasing.Ni-free Ti-based shape memory alloys are promising candidates for obtaining the required multifunctional properties.In this study,a wide content range of(0-15)wt%of low-cost,toxicity-free,and high-biocompatible Sn element was added to the Ti-8Mo(wt%)alloy to study its effect on the superelastic recovery and mechanical properties of biomedical Ti-Mo-Sn alloys.By tailoring Sn content,desired multifunctional properties of high elastic admissible strain and room temperature superelasticity were achieved in the studied Ti-Mo-Sn alloys.It was found that the increase in Sn content stabilized theβphase and a singleβphase was obtained at room temperature in Ti-8Mo-(13,15)Sn alloys.The addition of Sn modified the lattice parameters of theα″martensite andβphase and affected the lattice deformation stain ofβ→α″.The lattice deformation strain along the[011]βdirection was found to be decreased by-0.26%/wt%Sn.The room temperature superelasticity with a recovery strain of 3.1%and an elastic admissible strain of 1%was obtained in the Ti-8Mo-13Sn alloy.As Sn content increased to 15 wt%,a high elastic admissible strain of 1.56%and a recovery strain of 2.0%were obtained.These Ti-Mo-Sn alloys with excellent multifunctional properties are promising candidates for bio-implant applications.