In this paper, statistical optimization method was used to optimize the flash-spinning process conditions. Ultra-high molecular weight polyethylene (UHMWPE) superfine fiber was fabricated by flash-spinning method us...In this paper, statistical optimization method was used to optimize the flash-spinning process conditions. Ultra-high molecular weight polyethylene (UHMWPE) superfine fiber was fabricated by flash-spinning method using UHMWPE as the fiberforming polymer, 1, 2-dichloroethane as the main solvent. The important parameters of the flash-spinning were filtered by Plackett-Burman experimental design based on the single factor experiments. After determining the best regions of the fiber properties, the optimum level of the important parameters were determined by Box-Behnken design. The results of the design showed that the important parameters influencing on the properties of the flash.spinning fiber were spinning temperature, spinning pressure, and spinning solution concentration. The optimum technical parameters were: spinning temperature 186. 4 ~C, spinning pressure 6. 16 MPa, spinning solution concentration 3.06 %. The highest combination property of the flash-spinning fiber was 86.39 under this condition.展开更多
基金Key Project of Chinese Ministry of Education( No. 208005)Instructional Technology Project of National Textile andApparel Council, China ( No.2009076)Application Fundamental and Advanced Technology Research Proposal Project of Tianjin, China(No.10 JCYBJC03100)
文摘In this paper, statistical optimization method was used to optimize the flash-spinning process conditions. Ultra-high molecular weight polyethylene (UHMWPE) superfine fiber was fabricated by flash-spinning method using UHMWPE as the fiberforming polymer, 1, 2-dichloroethane as the main solvent. The important parameters of the flash-spinning were filtered by Plackett-Burman experimental design based on the single factor experiments. After determining the best regions of the fiber properties, the optimum level of the important parameters were determined by Box-Behnken design. The results of the design showed that the important parameters influencing on the properties of the flash.spinning fiber were spinning temperature, spinning pressure, and spinning solution concentration. The optimum technical parameters were: spinning temperature 186. 4 ~C, spinning pressure 6. 16 MPa, spinning solution concentration 3.06 %. The highest combination property of the flash-spinning fiber was 86.39 under this condition.