The superfluidity of helium-4 is explained until today by a quantum theory: the Bose-Einstein condensation. This theory is rather satisfactory in describing the superfluid state of helium-4 because this one is a syste...The superfluidity of helium-4 is explained until today by a quantum theory: the Bose-Einstein condensation. This theory is rather satisfactory in describing the superfluid state of helium-4 because this one is a system made up of bosons (particles of integer spin). However, the discovery of the superfluidity of helium-3 in 1971 called into question the veracity of this quantum theory. In fact, helium-3 being a system composed of fermions (particles of half-integer spin), it cannot be subject to Bose-Einstein condensation. It is to correct this deficiency that we introduce here a classical (non-quantum) theory of superfluids. This new theory makes no difference between the λ transition of bosons and that of fermions. It is based on a fundamental law: “in a superfluid, density is conserved”. In this work, we have shown that this simple law explains not only the zero viscosity of superfluids but also the surprising phenomena observed in the superfluid state, I quote the liquidity of helium at normal pressure down to 0 K, vaporization without boiling, high thermal conductivity, the fountain effect, the ability to go up one side of the wall of a container to come down on the other side and the existence of a critical velocity.展开更多
We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used ...We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model,the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory.An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction,while antiferromagnetism accompanies this state.The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase.The A phase is analogous to the pseudogap phase,which shows that electrons go to form pairs but do not cause a supercurrent.We also show the superfluid behavior of the unconventional superconducting state and its critical temperature.It is proven directly that the flat band can effectively raise the critical temperature of superconductivity.It is implementable to simulate and control strongly-correlated electrons'behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures.Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.展开更多
This paper introduces a novel theoretical model that reimagines the internal structure of quarks as superfluid vortices formed during the Quark Epoch of the Big Bang. The proposed theory challenges the traditional vie...This paper introduces a novel theoretical model that reimagines the internal structure of quarks as superfluid vortices formed during the Quark Epoch of the Big Bang. The proposed theory challenges the traditional view of quarks as point-like entities without internal structure, offering instead a hydrodynamic perspective that aligns with the principles of quantum chromodynamics (QCD). By considering quarks as vortices in a frictionless superfluid vacuum, the model provides new insights into their mass, charge, spin, and interactions. The formalism presented in this work utilizes hydrodynamic principles to model quarks as irrotational circular vortices, calculating key properties such as charge radius, mass, and density. The calculations are grounded in the application of vortex dynamics, including the evaluation of circulation, vorticity, and the balance of forces within the quantum fluid. The resulting quark radius and mass are shown to be consistent with known experimental ranges, providing a strong validation of the vortex-based formalism. The theory also explores the implications of this vortex model on the stability of quarks within protons and neutrons, and how quark-antiquark pairs (mesons) and three-quark structures (baryons) can be understood as interactions between these vortices. Additionally, the model predicts specific quark properties such as charge radius and density, which are consistent with experimental observations and current understandings of subatomic particle physics. Furthermore, this approach elucidates the strong force’s role as an interaction between these vortices, mediated by gluons in the quantum fluid. The proposed model not only aligns with existing experimental data but also paves the way for further exploration into the complex behaviors of quarks and their role in the fundamental structure of matter.展开更多
In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from the...In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from their massive black hole counterparts. DEOs are new astrophysical objects that are made up of entropy-free incompressible supranuclear dense superfluid (SuSu-matter), embedded in flat spacetimes and invisible to outside observers, practically trapped in false vacua. Based on highly accurate numerical modelling of the internal structures of pulsars and massive neutron stars, and in combination with using a large variety of EOSs, we show that the mass range of DEOs is practically unbounded from above: it spans those of massive neutron stars, stellar and even supermassive black holes: thanks to the universal maximum density of normal matter, , beyond which normal matter converts into SuSu-matter. We apply the scenario to the Crab and Vela pulsars, the massive magnetar PSR J0740 6620, the presumably massive NS formed in GW170817, and the SMBHs in Sgr A* and M87*. Our numerical results also reveal that DEO-Envelope systems not only mimic massive BHs nicely but also indicate that massive DEOs can hide vast amounts of matter capable of turning our universe into a SuSu-matter-dominated one, essentially trapped in false vacua.展开更多
Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. Th...Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation.展开更多
Recently, it was argued that the energy density of the supranuclear dense matter inside the cores of massive neutron stars must have reached the , beyond which supranuclear dense matter becomes incompressible entropy-...Recently, it was argued that the energy density of the supranuclear dense matter inside the cores of massive neutron stars must have reached the , beyond which supranuclear dense matter becomes incompressible entropy-free gluon-quark superfluid. As this matter is also confined and embedded in flat spacetime, it is Lorentz invariant and could be treated as vacuum. The lower bound of matter in the universe may be derived using the following observational constraints: 1) The average energy density of the observable universe is erg/cc, 2) The observable universe is remarkably flat, and 3) the Hubble constant is a slowly decreasing function of cosmic time. Based thereon, I argue that the energy density in nature should be bounded from below by the average density of our vast and flat parent universe, , which is, in turn, comparable to the vacuum energy density , and amounts to erg/cc. When the total energy density is measured relative to , then both GR and Newtonian field equations may consistently model the gravitational potential of the parent universe without invoking cosmological constants. Relying on the recently proposed unicentric model of the observable universe, UNIMOUN, the big bang must have warped the initially flat spacetime into a curved one, though the expansion of the fireball doomed the excited energy state to diffuse out and return back to the ground energy state that governs the flat spacetime of our vast parent universe.展开更多
In view of the growing difficulties of ΛCDM-cosmologies to compete with recent highly accurate cosmological observations, I propose the alternative model: the Unicentric Model of the Observable UNiverse (UNIMOUN). Th...In view of the growing difficulties of ΛCDM-cosmologies to compete with recent highly accurate cosmological observations, I propose the alternative model: the Unicentric Model of the Observable UNiverse (UNIMOUN). The model relies on employing a new time-dependent -metric for the GR field equations, which enables reversible phase transitions between normal compressible fluids and incompressible quantum superfluids, necessary for studying the cosmic evolution of the observable universe. The main properties of UNIMOUN read: 1) The observable universe was born in a flat spacetime environment, which is a tiny fraction of our infinitely large and flat parent universe, 2) Our big bang (BB) happened to occur in our neighbourhood, thereby endowing the universe the observed homogeneity and isotropy, 3) The energy density in the universe is upper-bounded by the universal critical density , beyond which matter becomes purely incompressible, rendering formation of physical singulareties, and in particular black holes, impossible, 4) Big bangs are neither singular events nor invoked by external forces, but rather, they are common self-sustaining events in our parent universe, 5) The progenitors of BBs are created through the merger of cosmically dead and inactive neutron stars and/or through “supermassive black holes” that are currently observed at the centres of most massive galaxies, 6) The progenitors are made up of purely incompressible entropy-free superconducting gluon- quark superfluids with (SuSu-matter), which endows these giant objects measurable sizes, 7) Spacetimes embedding SuSu-matter are conformally flat. It is shown that UNIMOUN is capable of dealing with or providing answers to several fundamental open questions in astrophysics and cosmology without invoking inflation, dark matter or dark energy.展开更多
Recently, a unicentric model of the observable universe (UNIMOUN) was proposed. Accordingly, big bangs are common events in our infinitely large, flat, homogeneous and isotropic parent universe. Their progenitors are ...Recently, a unicentric model of the observable universe (UNIMOUN) was proposed. Accordingly, big bangs are common events in our infinitely large, flat, homogeneous and isotropic parent universe. Their progenitors are clusters of cosmically dead and massive neutron stars that merged after reaching the ultimate lowest quantum energy state, where the matter is in an incompressible superconducting gluon-quark superfluid state and zero-entropy, hence granting the resulting progenitors measurable sizes and immunity to collapsing into black holes. Our big bang happened to occur in our neighbourhood, thereby enduing the universe, the observed homogeneity and isotropy. As the enclosed mass of the progenitor was finite, the dynamically expanding curved spacetimes embedded the fireball started flattening to finally diffuse into the flat spacetime of the parent universe. By means of general relativistic numerical hydrodynamical calculations, we use the H-metric to follow the time-evolution of the spacetime embedding the progenitor during the hadronization and the immediately following epochs. Based thereon, we find that the kinetic energy of newly created normal matter increases with distance in a self-similar manner, imitating thereby outflows of nearly non-interacting particles. On cosmic time scales, this behaviour yields a Hubble parameter, H(t), which decreases slowly with the distance from the big bang event. Given the sensitivity of the data of the Cosmic Microwave Background (CMB) from Planck to the underlying cosmological model, we conclude that UNIMOUN is a viable alternative to ΛCMD-cosmologies.展开更多
Exploring the state of ultra-cold supranuclear dense matter that makes up the cores of massive neutron stars is one of the greatest unresolved problems in modern physics. In this letter, we show that when the interior...Exploring the state of ultra-cold supranuclear dense matter that makes up the cores of massive neutron stars is one of the greatest unresolved problems in modern physics. In this letter, we show that when the interiors of pulsars are made of compressible and dissipative normal matter, the commonly used solution procedures combined with the known EOSs yield widely scattered solutions and poorly determined radii. A remarkable agreement emerges, however, if pulsars harbour cores that are made of incompressible entropy-free superfluids (SuSu-matter) embedded in flat spacetimes. Such supranuclear dense matter should condensate to form false vacua as predicated by non-perterbative QCD vacuum. The solutions here are found to be physically consistent and mathematically elegant, irrespective of the object’s mass. Based thereon, we conclude that the true masses of massive NSs may differ significantly from those revealed by direct observation.展开更多
Based on the theory and observations of glitching pulsars, we show that the ultra-cold supranuclear dense matter inside the cores of massive pulsars should condensate in vacua, as predicated by non-perturbative QCD. T...Based on the theory and observations of glitching pulsars, we show that the ultra-cold supranuclear dense matter inside the cores of massive pulsars should condensate in vacua, as predicated by non-perturbative QCD. The trapped matter here forms false vacuums embedded in flat spacetimes and completely disconnected from the outside world. Although the vacuum expectation value here vanishes, the masses and sizes of these incompressible superfluid cores are set to grow with cosmic times, in accord with the Onsager-Feynman superfluidity analysis. We apply our scenario to several well-studied pulsars, namely the Crab, Vela, PSR J0740+6620 and find that the trapped mass-contents in their cores read {0.15,0.55,0.64}, implying that their true masses are {1.55,2.35,2.72} , respectively. Based thereon, we conclude that: 1) The true masses of massive pulsars and neutron stars are much higher than detected by direct observations and, therefore, are unbounded from above, 2) The remnant of the merger event in GW170817 should be a massive NS harbouring a core with 1.66 .展开更多
The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-parti...The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry.展开更多
We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of bot...We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of both positive and negative physical massive particles, which he called planckions, interacting through strong superfluid forces. In our composite model for the Higgs boson, there is an intrinsic length scale associated with the vacuum, different from the one introduced by Winterberg, where, when the vacuum is in a perfectly balanced state, the number density of positive Planck particles equals the number density of negative Planck particles. Due to the mass compensating effect, the vacuum thus appears massless, chargeless, without pressure, energy density, or entropy. However, a situation can arise where there is an effective mass density imbalance due to the two species of Planck particle not matching in terms of populations, within their respective excited energy states. This does not require the physical addition or removal of either positive or negative Planck particles, within a given region of space, as originally thought. Ordinary matter, dark matter, and dark energy can thus be given a new interpretation as residual vacuum energies within the context of a greater vacuum, where the populations of the positive and negative energy states exactly balance. In the present epoch, it is estimated that the dark energy number density imbalance amounts to, , per cubic meter, when cosmic distance scales in excess of, 100 Mpc, are considered. Compared to a strictly balanced vacuum, where we estimate that the positive, and the negative Planck number density, is of the order, 7.85E54 particles per cubic meter, the above is a very small perturbation. This slight imbalance, we argue, would dramatically alleviate, if not altogether eliminate, the long standing cosmological constant problem.展开更多
We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckion...We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.展开更多
Recent astronomical observations of high redshift quasars, dark matter-dominated galaxies, mergers of neutron stars, glitch phenomena in pulsars, cosmic microwave background and experimental data from hadronic collide...Recent astronomical observations of high redshift quasars, dark matter-dominated galaxies, mergers of neutron stars, glitch phenomena in pulsars, cosmic microwave background and experimental data from hadronic colliders do not rule out, but they even support the hypothesis that the energy-density in our universe most likely is upper-limited by <span style="white-space:nowrap;"><i>p<sub>max</sub><sup style="margin-left:-25px;">uni</sup></i> </span>which is predicted to lie between 2 to 3 the nuclear density <em>p</em><sub>0</sub>. Quantum fluids in the cores of massive NSs with <em>p </em><span style="white-space:nowrap;"><span style="white-space:nowrap;">≈</span><i> <span style="white-space:nowrap;"><i>p<sub>max</sub><sup style="margin-left:-25px;">uni</sup></i> </span></i><span style="white-space:nowrap;">e</span>a</span>ch the maximum compressibility state, where they become insensitive to further compression by the embedding spacetime and undergo a phase transition into the purely incompressible gluon-quark superfluid state. A direct correspondence between the positive energy stored in the embedding spacetime and the degree of compressibility and superfluidity of the trapped matter is proposed. In this paper relevant observational signatures that support the maximum density hypothesis are reviewed, a possible origin of <span style="white-space:nowrap;"><i>p<sub>max</sub><sup style="margin-left:-25px;">uni</sup></i> </span>i<span style="white-space:nowrap;">s pr</span>oposed and finally the consequences of this scenario on the spacetime’s topology of the universe as well as on the mechanisms underlying the growth rate and power of the high redshift QSOs are discussed.展开更多
By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose-Fermi mixture in the BEC limit wh...By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose-Fermi mixture in the BEC limit where Fermi superfluid is treated as tightly bounded molecules, is investigated. In the case of a uniform quasi-two-dimensional (2D) case, the results for the Landau damping due to the Bose-Fermi interaction are obtained at low and high temperatures. It is shown that at low temperatures, the Landau damping rate is exponentially suppressed. By increasing the strength of dipolar interaction, and the energy of boson quasiparticles, Landau damping is suppressed over a broader temperature range.展开更多
The Accelerator Driven Sub-critical(ADS)system is a strategic plan to solve the nuclear waste problem for nuclear power plants in China.High-energy particle accelerators and colliders contain long strings of supercond...The Accelerator Driven Sub-critical(ADS)system is a strategic plan to solve the nuclear waste problem for nuclear power plants in China.High-energy particle accelerators and colliders contain long strings of superconducting devices,superconducting radio frequency cavities,and magnets,which may require cooling by 2 K superfluid helium(HeliumⅡ).2 K superfluid helium cryogenic system has become a research hot spot in the field of superconducting accelerators.In this study,the ADS Injector-I 2 K cryogenic system is examined in detail.The cryogenic system scheme design,key equipment,and technology design,such as the 2 K Joule–Thomson(J–T)heat exchanger and cryomodules CM1+CM2 design,are examined,in addition to the commissioning and operation of the cryogenic system.The ADS Injector-I 2 K cryogenic system is the first 100 W superfluid helium system designed and built independently in China.The ADS proton beam reached 10 Me V at 10 m A in July 2016 and 10 Me V at 2 m A in continuous mode in January 2017 and has been operated reliably for over 15,000 h,proving that the design of ADS Injector-I 2 K cryogenic system,the key equipment,and technology research are reasonable,reliable,and meet the requirements.The research into key technologies provides valuable engineering experience that can be helpful for future projects such as CI-ADS(China Initiative Accelerator-Driven System),SHINE(Shanghai High Repetition Rate XFEL and Extreme Light Facility),PAPS(Platform of Advanced Photon Source Technology),and CEPC(Circular Electron-Positron Collider),thereby developing national expertise in the field of superfluid helium cryogenic systems.展开更多
A helium cryogenic system is designed by the Institute of Modern Physics,Chinese Academy of Sciences,to supply different cooling powers to the cryomodules of ion-Linac(iLinac)accelerator,which serves as the injector o...A helium cryogenic system is designed by the Institute of Modern Physics,Chinese Academy of Sciences,to supply different cooling powers to the cryomodules of ion-Linac(iLinac)accelerator,which serves as the injector of the High Intensity Heavy-Ion Accelerator Facility project.The iLinac is a superconducting heavy-ion accelerator approximately 100 m long and contains 13 cryomodules cooled by superfluid helium.This article describes the cryogenic system design of the iLinac accelerator.The requirements of the cryogenic system,such as cooling mode,refrigeration temperature,operating pressure and pressure stability,are introduced and described in detail.In addition,heat loads from different sources are analyzed and calculated quantitatively.An equivalent cooling capacity of 10 kW at 4.5 K was determined for the cryogenic system according to the total heat load.Furthermore,a system process design was conducted and analyzed in detail.Further,the system layout and the main equipment are presented.展开更多
We theoretically investigate the periodically modulated interaction effect on the propagation properties of a traveling plane wave in a Bose–Einstein condensate(BEC) trapped in a deep annular lattice with local defec...We theoretically investigate the periodically modulated interaction effect on the propagation properties of a traveling plane wave in a Bose–Einstein condensate(BEC) trapped in a deep annular lattice with local defects both analytically and numerically. By using the two-mode ansatz and the tight-binding approximation, a critical condition for the system preserving the superfluidity is obtained analytically and confirmed numerically. We find that the coupled effects of periodic modulated atomic interactions, the quasi-momentum of the plane wave, and the defect can control the superfluidity of the system. Particularly, when we consider the periodic modulation in the system with single defect, the critical condition for the system entering the superfluid regime depends on both the defect and the momentum of the plane wave. This is different from the case for the system without the periodic modulation, where the critical condition is only determined by the defect. The modulation and quasi-momentum of the plane wave can enhance the system entering the superfluid regime. Interestingly, when the modulated amplitude/frequency, the defect strength, and the quasi-momentum of the plane wave satisfy a certain condition, the system will always be in the superfluid region. This engineering provides a possible means for studying the periodic modulation effect on propagation properties and the corresponding dynamics of BECs in disordered optical lattices.展开更多
For a Bose-condensed gas in a combined potential consisting of an axially-symmetric harmonic magnetic trap and one-dimensional (1D) optical lattice, using the mean-field Gross-Pitaevskii (G-P) equation and the pro...For a Bose-condensed gas in a combined potential consisting of an axially-symmetric harmonic magnetic trap and one-dimensional (1D) optical lattice, using the mean-field Gross-Pitaevskii (G-P) equation and the propagator method, we obtain the analytical result of the order parameter for matter wave interference at any time. The evolution of the interference pattern under a variation of the relative phase △Ф between successive subcondensates trapped on an optical lattices is also studied. For △Ф=π, the interference pattern is symmetric with two sharp peaks, which are symmetrically located on a straight line on both sides of a vacant central peak and moving apart from each other. This work is in agreement with available experimental results.展开更多
In this paper, the obtained experimental results concerning creation of bulk elementary excitations (BEEs) in isotopically pure liquid ^4He at low temperatures -60 mK are discussed. Positive rotons' (R^+-rotons)...In this paper, the obtained experimental results concerning creation of bulk elementary excitations (BEEs) in isotopically pure liquid ^4He at low temperatures -60 mK are discussed. Positive rotons' (R^+-rotons) creation by a pulsed heater was studied. Signals were recorded for the following quantum processes: quantum evaporation of ^4He-atoms from the free liquid-helium surface by the BEEs of the liquid helium-Ⅱ, and BEEs reflection from the free surface back into the bulk liquid. Typical signals are shown, and ratios of signal amplitudes are evaluated. For long heater pulses from 5 to 10 μs, appearance of the second atomic cloud consisting of evaporated ^4He-atoms was observed in addition to the first atomic cloud. It is thought that the first atomic cloud of the evaporated helium atoms consists of very fast ^4He-atoms with energies ~35 K evaporated by positive rotons with the special energies ~17 K (~2ER~2×8.6 K with ER representing the roton minimum energy) corresponding to the third non-dispersive Zakharenko wave. The second cloud of slower ^4He-atoms was created by surface elementary excitations (SEEs or ripplons) possessing the special energies ~7.15 K representing the binding energy. It was assumed that such SEEs can be created by phonons incoming to the liquid surface with special energies ~6.2 K corresponding to the first non-dispersive Zakharenko wave which can interact at the liquid surface with the same phonons already reflected from the surface for long heater pulses. Also, some pulsed-heater characteristics were studied in order to better understand the features of such heaters in low temperature experiments.展开更多
文摘The superfluidity of helium-4 is explained until today by a quantum theory: the Bose-Einstein condensation. This theory is rather satisfactory in describing the superfluid state of helium-4 because this one is a system made up of bosons (particles of integer spin). However, the discovery of the superfluidity of helium-3 in 1971 called into question the veracity of this quantum theory. In fact, helium-3 being a system composed of fermions (particles of half-integer spin), it cannot be subject to Bose-Einstein condensation. It is to correct this deficiency that we introduce here a classical (non-quantum) theory of superfluids. This new theory makes no difference between the λ transition of bosons and that of fermions. It is based on a fundamental law: “in a superfluid, density is conserved”. In this work, we have shown that this simple law explains not only the zero viscosity of superfluids but also the surprising phenomena observed in the superfluid state, I quote the liquidity of helium at normal pressure down to 0 K, vaporization without boiling, high thermal conductivity, the fountain effect, the ability to go up one side of the wall of a container to come down on the other side and the existence of a critical velocity.
基金Project supported by the Natural Science Basic Research Program of Shaanxi(Program Nos.2023KJXX-064 and 2021JQ-748)the National Natural Science Foundation of China(Grant Nos.11804213 and 12174238)Scientific Research Foundation of Shaanxi University of Technology(Grant No.SLGRCQD2006).
文摘We study the coexistence of antiferromagnetism and unconventional superconductivity on the Creutz lattice which shows strictly flat bands in the noninteracting regime.The famous renormalized mean-field theory is used to deal with strong electron-electron repulsive Hubbard interaction in the effective low-energy t-J model,the superfluid weight of the unconventional superconducting state has been calculated via the linear response theory.An unconventional superconducting state with both spin-singlet and staggered spin-triplet pairs emerges beyond a critical antiferromagnetic coupling interaction,while antiferromagnetism accompanies this state.The superconducting state with only spin-singlet pairs is dominant with paramagnetic phase.The A phase is analogous to the pseudogap phase,which shows that electrons go to form pairs but do not cause a supercurrent.We also show the superfluid behavior of the unconventional superconducting state and its critical temperature.It is proven directly that the flat band can effectively raise the critical temperature of superconductivity.It is implementable to simulate and control strongly-correlated electrons'behavior on the Creutz lattice in the ultracold atoms experiment or other artificial structures.Our results may help the understanding of the interplay between unconventional superconductivity and magnetism.
文摘This paper introduces a novel theoretical model that reimagines the internal structure of quarks as superfluid vortices formed during the Quark Epoch of the Big Bang. The proposed theory challenges the traditional view of quarks as point-like entities without internal structure, offering instead a hydrodynamic perspective that aligns with the principles of quantum chromodynamics (QCD). By considering quarks as vortices in a frictionless superfluid vacuum, the model provides new insights into their mass, charge, spin, and interactions. The formalism presented in this work utilizes hydrodynamic principles to model quarks as irrotational circular vortices, calculating key properties such as charge radius, mass, and density. The calculations are grounded in the application of vortex dynamics, including the evaluation of circulation, vorticity, and the balance of forces within the quantum fluid. The resulting quark radius and mass are shown to be consistent with known experimental ranges, providing a strong validation of the vortex-based formalism. The theory also explores the implications of this vortex model on the stability of quarks within protons and neutrons, and how quark-antiquark pairs (mesons) and three-quark structures (baryons) can be understood as interactions between these vortices. Additionally, the model predicts specific quark properties such as charge radius and density, which are consistent with experimental observations and current understandings of subatomic particle physics. Furthermore, this approach elucidates the strong force’s role as an interaction between these vortices, mediated by gluons in the quantum fluid. The proposed model not only aligns with existing experimental data but also paves the way for further exploration into the complex behaviors of quarks and their role in the fundamental structure of matter.
文摘In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from their massive black hole counterparts. DEOs are new astrophysical objects that are made up of entropy-free incompressible supranuclear dense superfluid (SuSu-matter), embedded in flat spacetimes and invisible to outside observers, practically trapped in false vacua. Based on highly accurate numerical modelling of the internal structures of pulsars and massive neutron stars, and in combination with using a large variety of EOSs, we show that the mass range of DEOs is practically unbounded from above: it spans those of massive neutron stars, stellar and even supermassive black holes: thanks to the universal maximum density of normal matter, , beyond which normal matter converts into SuSu-matter. We apply the scenario to the Crab and Vela pulsars, the massive magnetar PSR J0740 6620, the presumably massive NS formed in GW170817, and the SMBHs in Sgr A* and M87*. Our numerical results also reveal that DEO-Envelope systems not only mimic massive BHs nicely but also indicate that massive DEOs can hide vast amounts of matter capable of turning our universe into a SuSu-matter-dominated one, essentially trapped in false vacua.
文摘Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation.
文摘Recently, it was argued that the energy density of the supranuclear dense matter inside the cores of massive neutron stars must have reached the , beyond which supranuclear dense matter becomes incompressible entropy-free gluon-quark superfluid. As this matter is also confined and embedded in flat spacetime, it is Lorentz invariant and could be treated as vacuum. The lower bound of matter in the universe may be derived using the following observational constraints: 1) The average energy density of the observable universe is erg/cc, 2) The observable universe is remarkably flat, and 3) the Hubble constant is a slowly decreasing function of cosmic time. Based thereon, I argue that the energy density in nature should be bounded from below by the average density of our vast and flat parent universe, , which is, in turn, comparable to the vacuum energy density , and amounts to erg/cc. When the total energy density is measured relative to , then both GR and Newtonian field equations may consistently model the gravitational potential of the parent universe without invoking cosmological constants. Relying on the recently proposed unicentric model of the observable universe, UNIMOUN, the big bang must have warped the initially flat spacetime into a curved one, though the expansion of the fireball doomed the excited energy state to diffuse out and return back to the ground energy state that governs the flat spacetime of our vast parent universe.
文摘In view of the growing difficulties of ΛCDM-cosmologies to compete with recent highly accurate cosmological observations, I propose the alternative model: the Unicentric Model of the Observable UNiverse (UNIMOUN). The model relies on employing a new time-dependent -metric for the GR field equations, which enables reversible phase transitions between normal compressible fluids and incompressible quantum superfluids, necessary for studying the cosmic evolution of the observable universe. The main properties of UNIMOUN read: 1) The observable universe was born in a flat spacetime environment, which is a tiny fraction of our infinitely large and flat parent universe, 2) Our big bang (BB) happened to occur in our neighbourhood, thereby endowing the universe the observed homogeneity and isotropy, 3) The energy density in the universe is upper-bounded by the universal critical density , beyond which matter becomes purely incompressible, rendering formation of physical singulareties, and in particular black holes, impossible, 4) Big bangs are neither singular events nor invoked by external forces, but rather, they are common self-sustaining events in our parent universe, 5) The progenitors of BBs are created through the merger of cosmically dead and inactive neutron stars and/or through “supermassive black holes” that are currently observed at the centres of most massive galaxies, 6) The progenitors are made up of purely incompressible entropy-free superconducting gluon- quark superfluids with (SuSu-matter), which endows these giant objects measurable sizes, 7) Spacetimes embedding SuSu-matter are conformally flat. It is shown that UNIMOUN is capable of dealing with or providing answers to several fundamental open questions in astrophysics and cosmology without invoking inflation, dark matter or dark energy.
文摘Recently, a unicentric model of the observable universe (UNIMOUN) was proposed. Accordingly, big bangs are common events in our infinitely large, flat, homogeneous and isotropic parent universe. Their progenitors are clusters of cosmically dead and massive neutron stars that merged after reaching the ultimate lowest quantum energy state, where the matter is in an incompressible superconducting gluon-quark superfluid state and zero-entropy, hence granting the resulting progenitors measurable sizes and immunity to collapsing into black holes. Our big bang happened to occur in our neighbourhood, thereby enduing the universe, the observed homogeneity and isotropy. As the enclosed mass of the progenitor was finite, the dynamically expanding curved spacetimes embedded the fireball started flattening to finally diffuse into the flat spacetime of the parent universe. By means of general relativistic numerical hydrodynamical calculations, we use the H-metric to follow the time-evolution of the spacetime embedding the progenitor during the hadronization and the immediately following epochs. Based thereon, we find that the kinetic energy of newly created normal matter increases with distance in a self-similar manner, imitating thereby outflows of nearly non-interacting particles. On cosmic time scales, this behaviour yields a Hubble parameter, H(t), which decreases slowly with the distance from the big bang event. Given the sensitivity of the data of the Cosmic Microwave Background (CMB) from Planck to the underlying cosmological model, we conclude that UNIMOUN is a viable alternative to ΛCMD-cosmologies.
文摘Exploring the state of ultra-cold supranuclear dense matter that makes up the cores of massive neutron stars is one of the greatest unresolved problems in modern physics. In this letter, we show that when the interiors of pulsars are made of compressible and dissipative normal matter, the commonly used solution procedures combined with the known EOSs yield widely scattered solutions and poorly determined radii. A remarkable agreement emerges, however, if pulsars harbour cores that are made of incompressible entropy-free superfluids (SuSu-matter) embedded in flat spacetimes. Such supranuclear dense matter should condensate to form false vacua as predicated by non-perterbative QCD vacuum. The solutions here are found to be physically consistent and mathematically elegant, irrespective of the object’s mass. Based thereon, we conclude that the true masses of massive NSs may differ significantly from those revealed by direct observation.
文摘Based on the theory and observations of glitching pulsars, we show that the ultra-cold supranuclear dense matter inside the cores of massive pulsars should condensate in vacua, as predicated by non-perturbative QCD. The trapped matter here forms false vacuums embedded in flat spacetimes and completely disconnected from the outside world. Although the vacuum expectation value here vanishes, the masses and sizes of these incompressible superfluid cores are set to grow with cosmic times, in accord with the Onsager-Feynman superfluidity analysis. We apply our scenario to several well-studied pulsars, namely the Crab, Vela, PSR J0740+6620 and find that the trapped mass-contents in their cores read {0.15,0.55,0.64}, implying that their true masses are {1.55,2.35,2.72} , respectively. Based thereon, we conclude that: 1) The true masses of massive pulsars and neutron stars are much higher than detected by direct observations and, therefore, are unbounded from above, 2) The remnant of the merger event in GW170817 should be a massive NS harbouring a core with 1.66 .
文摘The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry.
文摘We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of both positive and negative physical massive particles, which he called planckions, interacting through strong superfluid forces. In our composite model for the Higgs boson, there is an intrinsic length scale associated with the vacuum, different from the one introduced by Winterberg, where, when the vacuum is in a perfectly balanced state, the number density of positive Planck particles equals the number density of negative Planck particles. Due to the mass compensating effect, the vacuum thus appears massless, chargeless, without pressure, energy density, or entropy. However, a situation can arise where there is an effective mass density imbalance due to the two species of Planck particle not matching in terms of populations, within their respective excited energy states. This does not require the physical addition or removal of either positive or negative Planck particles, within a given region of space, as originally thought. Ordinary matter, dark matter, and dark energy can thus be given a new interpretation as residual vacuum energies within the context of a greater vacuum, where the populations of the positive and negative energy states exactly balance. In the present epoch, it is estimated that the dark energy number density imbalance amounts to, , per cubic meter, when cosmic distance scales in excess of, 100 Mpc, are considered. Compared to a strictly balanced vacuum, where we estimate that the positive, and the negative Planck number density, is of the order, 7.85E54 particles per cubic meter, the above is a very small perturbation. This slight imbalance, we argue, would dramatically alleviate, if not altogether eliminate, the long standing cosmological constant problem.
文摘We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.
文摘Recent astronomical observations of high redshift quasars, dark matter-dominated galaxies, mergers of neutron stars, glitch phenomena in pulsars, cosmic microwave background and experimental data from hadronic colliders do not rule out, but they even support the hypothesis that the energy-density in our universe most likely is upper-limited by <span style="white-space:nowrap;"><i>p<sub>max</sub><sup style="margin-left:-25px;">uni</sup></i> </span>which is predicted to lie between 2 to 3 the nuclear density <em>p</em><sub>0</sub>. Quantum fluids in the cores of massive NSs with <em>p </em><span style="white-space:nowrap;"><span style="white-space:nowrap;">≈</span><i> <span style="white-space:nowrap;"><i>p<sub>max</sub><sup style="margin-left:-25px;">uni</sup></i> </span></i><span style="white-space:nowrap;">e</span>a</span>ch the maximum compressibility state, where they become insensitive to further compression by the embedding spacetime and undergo a phase transition into the purely incompressible gluon-quark superfluid state. A direct correspondence between the positive energy stored in the embedding spacetime and the degree of compressibility and superfluidity of the trapped matter is proposed. In this paper relevant observational signatures that support the maximum density hypothesis are reviewed, a possible origin of <span style="white-space:nowrap;"><i>p<sub>max</sub><sup style="margin-left:-25px;">uni</sup></i> </span>i<span style="white-space:nowrap;">s pr</span>oposed and finally the consequences of this scenario on the spacetime’s topology of the universe as well as on the mechanisms underlying the growth rate and power of the high redshift QSOs are discussed.
文摘By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose-Fermi mixture in the BEC limit where Fermi superfluid is treated as tightly bounded molecules, is investigated. In the case of a uniform quasi-two-dimensional (2D) case, the results for the Landau damping due to the Bose-Fermi interaction are obtained at low and high temperatures. It is shown that at low temperatures, the Landau damping rate is exponentially suppressed. By increasing the strength of dipolar interaction, and the energy of boson quasiparticles, Landau damping is suppressed over a broader temperature range.
文摘The Accelerator Driven Sub-critical(ADS)system is a strategic plan to solve the nuclear waste problem for nuclear power plants in China.High-energy particle accelerators and colliders contain long strings of superconducting devices,superconducting radio frequency cavities,and magnets,which may require cooling by 2 K superfluid helium(HeliumⅡ).2 K superfluid helium cryogenic system has become a research hot spot in the field of superconducting accelerators.In this study,the ADS Injector-I 2 K cryogenic system is examined in detail.The cryogenic system scheme design,key equipment,and technology design,such as the 2 K Joule–Thomson(J–T)heat exchanger and cryomodules CM1+CM2 design,are examined,in addition to the commissioning and operation of the cryogenic system.The ADS Injector-I 2 K cryogenic system is the first 100 W superfluid helium system designed and built independently in China.The ADS proton beam reached 10 Me V at 10 m A in July 2016 and 10 Me V at 2 m A in continuous mode in January 2017 and has been operated reliably for over 15,000 h,proving that the design of ADS Injector-I 2 K cryogenic system,the key equipment,and technology research are reasonable,reliable,and meet the requirements.The research into key technologies provides valuable engineering experience that can be helpful for future projects such as CI-ADS(China Initiative Accelerator-Driven System),SHINE(Shanghai High Repetition Rate XFEL and Extreme Light Facility),PAPS(Platform of Advanced Photon Source Technology),and CEPC(Circular Electron-Positron Collider),thereby developing national expertise in the field of superfluid helium cryogenic systems.
文摘A helium cryogenic system is designed by the Institute of Modern Physics,Chinese Academy of Sciences,to supply different cooling powers to the cryomodules of ion-Linac(iLinac)accelerator,which serves as the injector of the High Intensity Heavy-Ion Accelerator Facility project.The iLinac is a superconducting heavy-ion accelerator approximately 100 m long and contains 13 cryomodules cooled by superfluid helium.This article describes the cryogenic system design of the iLinac accelerator.The requirements of the cryogenic system,such as cooling mode,refrigeration temperature,operating pressure and pressure stability,are introduced and described in detail.In addition,heat loads from different sources are analyzed and calculated quantitatively.An equivalent cooling capacity of 10 kW at 4.5 K was determined for the cryogenic system according to the total heat load.Furthermore,a system process design was conducted and analyzed in detail.Further,the system layout and the main equipment are presented.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11764039,11475027,11865014,11305132,and 11274255)the Natural Science Foundation of Gansu Province,China(Grant No.17JR5RA076)the Scientific Research Project of Gansu Higher Education,China(Grant No.2016A-005)
文摘We theoretically investigate the periodically modulated interaction effect on the propagation properties of a traveling plane wave in a Bose–Einstein condensate(BEC) trapped in a deep annular lattice with local defects both analytically and numerically. By using the two-mode ansatz and the tight-binding approximation, a critical condition for the system preserving the superfluidity is obtained analytically and confirmed numerically. We find that the coupled effects of periodic modulated atomic interactions, the quasi-momentum of the plane wave, and the defect can control the superfluidity of the system. Particularly, when we consider the periodic modulation in the system with single defect, the critical condition for the system entering the superfluid regime depends on both the defect and the momentum of the plane wave. This is different from the case for the system without the periodic modulation, where the critical condition is only determined by the defect. The modulation and quasi-momentum of the plane wave can enhance the system entering the superfluid regime. Interestingly, when the modulated amplitude/frequency, the defect strength, and the quasi-momentum of the plane wave satisfy a certain condition, the system will always be in the superfluid region. This engineering provides a possible means for studying the periodic modulation effect on propagation properties and the corresponding dynamics of BECs in disordered optical lattices.
文摘For a Bose-condensed gas in a combined potential consisting of an axially-symmetric harmonic magnetic trap and one-dimensional (1D) optical lattice, using the mean-field Gross-Pitaevskii (G-P) equation and the propagator method, we obtain the analytical result of the order parameter for matter wave interference at any time. The evolution of the interference pattern under a variation of the relative phase △Ф between successive subcondensates trapped on an optical lattices is also studied. For △Ф=π, the interference pattern is symmetric with two sharp peaks, which are symmetrically located on a straight line on both sides of a vacant central peak and moving apart from each other. This work is in agreement with available experimental results.
文摘In this paper, the obtained experimental results concerning creation of bulk elementary excitations (BEEs) in isotopically pure liquid ^4He at low temperatures -60 mK are discussed. Positive rotons' (R^+-rotons) creation by a pulsed heater was studied. Signals were recorded for the following quantum processes: quantum evaporation of ^4He-atoms from the free liquid-helium surface by the BEEs of the liquid helium-Ⅱ, and BEEs reflection from the free surface back into the bulk liquid. Typical signals are shown, and ratios of signal amplitudes are evaluated. For long heater pulses from 5 to 10 μs, appearance of the second atomic cloud consisting of evaporated ^4He-atoms was observed in addition to the first atomic cloud. It is thought that the first atomic cloud of the evaporated helium atoms consists of very fast ^4He-atoms with energies ~35 K evaporated by positive rotons with the special energies ~17 K (~2ER~2×8.6 K with ER representing the roton minimum energy) corresponding to the third non-dispersive Zakharenko wave. The second cloud of slower ^4He-atoms was created by surface elementary excitations (SEEs or ripplons) possessing the special energies ~7.15 K representing the binding energy. It was assumed that such SEEs can be created by phonons incoming to the liquid surface with special energies ~6.2 K corresponding to the first non-dispersive Zakharenko wave which can interact at the liquid surface with the same phonons already reflected from the surface for long heater pulses. Also, some pulsed-heater characteristics were studied in order to better understand the features of such heaters in low temperature experiments.