Considering the geometric nonlinearity due to the large elastic deformations of flexible links, the superharmonic resonances of elastic linkages in the forms of ω1/3 and ω1/2 are studied by the method of multiple sc...Considering the geometric nonlinearity due to the large elastic deformations of flexible links, the superharmonic resonances of elastic linkages in the forms of ω1/3 and ω1/2 are studied by the method of multiple scales. The research shows that the analytical results are coincident with the experimental results.展开更多
The superharmonic resonances of elastic linkages are studied by using the method of multiple scales under the excitation of its inertial foree。 The analyses demonstrate that the superharmonic resonances cau...The superharmonic resonances of elastic linkages are studied by using the method of multiple scales under the excitation of its inertial foree。 The analyses demonstrate that the superharmonic resonances caused by the quadratic and cubic nonlinearities due to large elastic deformations of the flexible links and multi-frequencies of the inertial force of linkages are the reason to produce the critical speeds. The results of explaining of the lower order harmonic reso- nances by“1/n' method are verified theoretically。展开更多
As two crucial indicators of bistable energy harvesting performance,band width and power amplitude are simultaneously investigated for obtaining the synergy effect.Toward this goal,a nonlinear electromechanical-couple...As two crucial indicators of bistable energy harvesting performance,band width and power amplitude are simultaneously investigated for obtaining the synergy effect.Toward this goal,a nonlinear electromechanical-coupled distributed-parameter model of the bistable piezoelectric energy harvester is established.Based on the electromechanical decoupled method,approximate higher-order analytical solutions of the beam displacement,harvested power and effective bandwidth are derived.The cubic-function discriminant of the analytical solution is introduced to determine the nonlinear excitation-frequency boundaries of multiple solutions and power peak.The stability of the multiple solutions is analyzed through Jacobi matrix of the modulation equation.Superharmonic resonance is notified.Upward and downward sweep experiments and numerical solutions of time history curves,phase portraits and power spectra confirm the analytical findings.To realize optimized broadband energy harvesting,the parametric study on the coefficients of the linear and cubic elastic external forces with the corresponding optimal load resistance is performed.For the nonlinear hardening case,more positive linear coefficient is preferred.For the nonlinear softening case,the cubic coefficient slightly larger than its optimal value is recommended at each given linear coefficient.By tuning the load resistance and linear and cubic coefficients of the external force,broadband bistable energy harvesting with optimized power is realized.展开更多
文摘Considering the geometric nonlinearity due to the large elastic deformations of flexible links, the superharmonic resonances of elastic linkages in the forms of ω1/3 and ω1/2 are studied by the method of multiple scales. The research shows that the analytical results are coincident with the experimental results.
文摘The superharmonic resonances of elastic linkages are studied by using the method of multiple scales under the excitation of its inertial foree。 The analyses demonstrate that the superharmonic resonances caused by the quadratic and cubic nonlinearities due to large elastic deformations of the flexible links and multi-frequencies of the inertial force of linkages are the reason to produce the critical speeds. The results of explaining of the lower order harmonic reso- nances by“1/n' method are verified theoretically。
基金supported by National Natural Science Foundation of China(Grants 11802071,11902193,and 11625208)Natural Science Foundation of Shanghai(Grant 19ZR1424300).
文摘As two crucial indicators of bistable energy harvesting performance,band width and power amplitude are simultaneously investigated for obtaining the synergy effect.Toward this goal,a nonlinear electromechanical-coupled distributed-parameter model of the bistable piezoelectric energy harvester is established.Based on the electromechanical decoupled method,approximate higher-order analytical solutions of the beam displacement,harvested power and effective bandwidth are derived.The cubic-function discriminant of the analytical solution is introduced to determine the nonlinear excitation-frequency boundaries of multiple solutions and power peak.The stability of the multiple solutions is analyzed through Jacobi matrix of the modulation equation.Superharmonic resonance is notified.Upward and downward sweep experiments and numerical solutions of time history curves,phase portraits and power spectra confirm the analytical findings.To realize optimized broadband energy harvesting,the parametric study on the coefficients of the linear and cubic elastic external forces with the corresponding optimal load resistance is performed.For the nonlinear hardening case,more positive linear coefficient is preferred.For the nonlinear softening case,the cubic coefficient slightly larger than its optimal value is recommended at each given linear coefficient.By tuning the load resistance and linear and cubic coefficients of the external force,broadband bistable energy harvesting with optimized power is realized.