In a recent work, we calculated the magnetic field inside a free electron due to its spin, and found it to be about B = 8.3 × 1013 T. In the present study we calculate the spinning speed of a free electron in the...In a recent work, we calculated the magnetic field inside a free electron due to its spin, and found it to be about B = 8.3 × 1013 T. In the present study we calculate the spinning speed of a free electron in the current loop model. We show that spinning speed is equal to the speed of light. Therefore it is shown that if electron was not spinning the mass of electron would be zero. But since spinning is an unseparable part of an electron, we say that mass of electron is non-zero and is equal to (m = 9.11 × 10−28 g).展开更多
For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable mag...For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable magnetic field. Under a reasona-ble assumption, the MEMF of PMIC is simplified after the aforementioned general formula is used to calculate high spinning PMIC in the geomagnetic field environment. The determination approach of half-cycle is discussed and the method of rotation speed test is studied, and a test is conducted in the paper. The rotation speed curve obtained by the approach in this paper is consistent with the curve by telemetry.展开更多
Cross-over method is established to predict necking point for PET high- speed fiber spinning. Even slowly crystallizing polymers such as PET can crystallize on the spinline at sufficiently high spinning speed. The dev...Cross-over method is established to predict necking point for PET high- speed fiber spinning. Even slowly crystallizing polymers such as PET can crystallize on the spinline at sufficiently high spinning speed. The development of rtmning velocity, temperature, crystallinity and theological force is investigated for the take-up velocity over a range of 6 000 - 10 000 m/min. The position of necking point, temperature rise and abrupt increase of crystallinity move closer to the spinneret with the increase of take-up velocity,展开更多
Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of v...Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of velocity, diameter, temperature, chain orientation, and crystallinity in the fiber spinning process. Considering combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymers under various spinning conditions, The structure change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Based on the relaxation mechanism of macromolecules in flow field different types of morphology change of polymer chains before and in the neck are proposed, giving a complete prospect of structure evolution and crystallization of semi-crystalline polymer in the high speed fiber spinning process.展开更多
This paper explains the principle of a newly developed ZMLMC directional solidification apparatus with a superhigh temperature gradient.With the help of the apparatus,research was done on the change of directional sol...This paper explains the principle of a newly developed ZMLMC directional solidification apparatus with a superhigh temperature gradient.With the help of the apparatus,research was done on the change of directional solidification structures of the cobalt based superalloy K10 at superhigh velocities.Relations between the primary and secondary dendrite arm spacings and the cooling rates Were investigated.Experimental results show that the primary and secondary dendrite arm spacings of directionally solidified cobalt based superalloys are respectively finer than one fifth and one eighth of those produced by conventional directional soli-dification processes.The primary and secondary dendrite arm spacing which can be decreased by increasing the cooling rate,and the relations between these spacings(λ1,λ2)and the temperature gradient(G)and solidfication rate(v)were as follows:λ1=1.428×10^(3)(G·v)^-1_(1)λ_(2)=0.132×10^(3)(G·v)^-1.展开更多
Defect free yarn is a great demand for spinner, knitter, and weaver and also other textile personnel because numerous end products from knit apparels to woven fabrics, from towels to sheets and from carpets to industr...Defect free yarn is a great demand for spinner, knitter, and weaver and also other textile personnel because numerous end products from knit apparels to woven fabrics, from towels to sheets and from carpets to industrial fabrics characteristics significantly depend on the physical properties of yarn. The qualities of rotor yarn are really directed by spinning parameters. The aim of this study is to observe the effect of spinning parameters such as rotor diameter and speed on thick, thin places and neps of yarn in rotor spinning process. 0.11 sliver hank of 100% cotton was used to produce 12 Ne yarn. 65% virgin cotton and 35% wastage cotton were mixed together. The positive impact of spinning parameters on yarn properties were accessed by thick places, thin places and neps. Results indicate that the yarn qualities were improved with increasing of rotor speed and rotor diameter. The rotor diameter was settled to 43 mm while rotor speed fluctuated from 35,000 to 45,000 rpm and rotor speed was fixed to 35,000 rpm while rotor diameter across contrasts from 43 mm to 66 mm.展开更多
A roll-decoupled course correction fuze with canards can improve the hit accuracy of conventional unguided ammunitions. The fuze increases accuracy by reducing the effect of angular and translational motion produced b...A roll-decoupled course correction fuze with canards can improve the hit accuracy of conventional unguided ammunitions. The fuze increases accuracy by reducing the effect of angular and translational motion produced by the cyclical yawing forces applied on the projectile. In order to investigate the influence of yawing forces on angular motion, a theoretical solution of the total yaw angle function with the cyclical yawing forces is deduced utilizing the 7 degrees of freedom(7-DOF) model designed for this calculation. Furthermore, a detailed simulation is carried out to determine the influence rules of yawing force on angular motion. The calculated results illustrate that, when the rotational speed of the forward part is close to the initial turning rate, the total yaw angle increases and the flight range decreases sharply. Moreover, a yawing force at an appropriate frequency is able to correct the gun azimuth and elevation perturbation to some extent.展开更多
We analyze the transverse nonlinear vibrations of a rotating flexible disk subjected to a rotating point force with a periodically varying rotating speed. Based on Hamilton’s principle, the nonlinear governing equati...We analyze the transverse nonlinear vibrations of a rotating flexible disk subjected to a rotating point force with a periodically varying rotating speed. Based on Hamilton’s principle, the nonlinear governing equations of motion (coupled equations among the radial, tangential and transverse displacements) are derived for the rotating flexible disk. When the in-plane inertia is ignored and a stress function is introduced, the three nonlinearly coupled partial differential equations are reduced to two nonlinearly coupled partial differential equations. According to Galerkin’s approach, a four-degree-of-freedom nonlinear system governing the weakly split resonant modes is derived. The resonant case considered here is 1:1:2:2 internal resonance and a critical speed resonance. The primary parametric resonance for the first-order sin and cos modes and the fundamental parametric resonance for the second-order sin and cos modes are also considered. The method of multiple scales is used to obtain a set of eight-dimensional nonlinear averaged equations. Based on the averaged equations, using numerical simulations, the influence of different parameters on the nonlinear vibrations of the spinning disk is detected. It is concluded that there exist complicated nonlinear behaviors including the periodic, period-n and multi-pulse type chaotic motions for the spinning disk with a varying rotating speed. It is also found that among all parameters, the damping and excitation have great influence on the nonlinear responses of the spinning disk with a varying rotating speed.展开更多
文摘In a recent work, we calculated the magnetic field inside a free electron due to its spin, and found it to be about B = 8.3 × 1013 T. In the present study we calculate the spinning speed of a free electron in the current loop model. We show that spinning speed is equal to the speed of light. Therefore it is shown that if electron was not spinning the mass of electron would be zero. But since spinning is an unseparable part of an electron, we say that mass of electron is non-zero and is equal to (m = 9.11 × 10−28 g).
基金National Key Lab for Electronic Measurement and Technology,North University of China(No.9140C120401080C12)
文摘For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable magnetic field. Under a reasona-ble assumption, the MEMF of PMIC is simplified after the aforementioned general formula is used to calculate high spinning PMIC in the geomagnetic field environment. The determination approach of half-cycle is discussed and the method of rotation speed test is studied, and a test is conducted in the paper. The rotation speed curve obtained by the approach in this paper is consistent with the curve by telemetry.
文摘Cross-over method is established to predict necking point for PET high- speed fiber spinning. Even slowly crystallizing polymers such as PET can crystallize on the spinline at sufficiently high spinning speed. The development of rtmning velocity, temperature, crystallinity and theological force is investigated for the take-up velocity over a range of 6 000 - 10 000 m/min. The position of necking point, temperature rise and abrupt increase of crystallinity move closer to the spinneret with the increase of take-up velocity,
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20204007,50390090,20490220,10590355)the Doctoral Foundation of National Education Committee of China(No.20030248008)the 863 Project of China(No.2002AA336120).
文摘Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of velocity, diameter, temperature, chain orientation, and crystallinity in the fiber spinning process. Considering combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymers under various spinning conditions, The structure change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Based on the relaxation mechanism of macromolecules in flow field different types of morphology change of polymer chains before and in the neck are proposed, giving a complete prospect of structure evolution and crystallization of semi-crystalline polymer in the high speed fiber spinning process.
基金supported by China National Natural Science foundation。
文摘This paper explains the principle of a newly developed ZMLMC directional solidification apparatus with a superhigh temperature gradient.With the help of the apparatus,research was done on the change of directional solidification structures of the cobalt based superalloy K10 at superhigh velocities.Relations between the primary and secondary dendrite arm spacings and the cooling rates Were investigated.Experimental results show that the primary and secondary dendrite arm spacings of directionally solidified cobalt based superalloys are respectively finer than one fifth and one eighth of those produced by conventional directional soli-dification processes.The primary and secondary dendrite arm spacing which can be decreased by increasing the cooling rate,and the relations between these spacings(λ1,λ2)and the temperature gradient(G)and solidfication rate(v)were as follows:λ1=1.428×10^(3)(G·v)^-1_(1)λ_(2)=0.132×10^(3)(G·v)^-1.
文摘Defect free yarn is a great demand for spinner, knitter, and weaver and also other textile personnel because numerous end products from knit apparels to woven fabrics, from towels to sheets and from carpets to industrial fabrics characteristics significantly depend on the physical properties of yarn. The qualities of rotor yarn are really directed by spinning parameters. The aim of this study is to observe the effect of spinning parameters such as rotor diameter and speed on thick, thin places and neps of yarn in rotor spinning process. 0.11 sliver hank of 100% cotton was used to produce 12 Ne yarn. 65% virgin cotton and 35% wastage cotton were mixed together. The positive impact of spinning parameters on yarn properties were accessed by thick places, thin places and neps. Results indicate that the yarn qualities were improved with increasing of rotor speed and rotor diameter. The rotor diameter was settled to 43 mm while rotor speed fluctuated from 35,000 to 45,000 rpm and rotor speed was fixed to 35,000 rpm while rotor diameter across contrasts from 43 mm to 66 mm.
文摘A roll-decoupled course correction fuze with canards can improve the hit accuracy of conventional unguided ammunitions. The fuze increases accuracy by reducing the effect of angular and translational motion produced by the cyclical yawing forces applied on the projectile. In order to investigate the influence of yawing forces on angular motion, a theoretical solution of the total yaw angle function with the cyclical yawing forces is deduced utilizing the 7 degrees of freedom(7-DOF) model designed for this calculation. Furthermore, a detailed simulation is carried out to determine the influence rules of yawing force on angular motion. The calculated results illustrate that, when the rotational speed of the forward part is close to the initial turning rate, the total yaw angle increases and the flight range decreases sharply. Moreover, a yawing force at an appropriate frequency is able to correct the gun azimuth and elevation perturbation to some extent.
基金support of the National Science Foundation for Distinguished Young Scholars of China (Grant No. 10425209)the National Natural Science Foundation of China (Grant No. 10732020)the Funding Project for Academic Human Resources Devel-opment in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality
文摘We analyze the transverse nonlinear vibrations of a rotating flexible disk subjected to a rotating point force with a periodically varying rotating speed. Based on Hamilton’s principle, the nonlinear governing equations of motion (coupled equations among the radial, tangential and transverse displacements) are derived for the rotating flexible disk. When the in-plane inertia is ignored and a stress function is introduced, the three nonlinearly coupled partial differential equations are reduced to two nonlinearly coupled partial differential equations. According to Galerkin’s approach, a four-degree-of-freedom nonlinear system governing the weakly split resonant modes is derived. The resonant case considered here is 1:1:2:2 internal resonance and a critical speed resonance. The primary parametric resonance for the first-order sin and cos modes and the fundamental parametric resonance for the second-order sin and cos modes are also considered. The method of multiple scales is used to obtain a set of eight-dimensional nonlinear averaged equations. Based on the averaged equations, using numerical simulations, the influence of different parameters on the nonlinear vibrations of the spinning disk is detected. It is concluded that there exist complicated nonlinear behaviors including the periodic, period-n and multi-pulse type chaotic motions for the spinning disk with a varying rotating speed. It is also found that among all parameters, the damping and excitation have great influence on the nonlinear responses of the spinning disk with a varying rotating speed.