期刊文献+
共找到698篇文章
< 1 2 35 >
每页显示 20 50 100
Superhydrophobic Surface-Assisted Preparation of Microspheres and Supraparticles and Their Applications
1
作者 Mengyao Pan Huijuan Shao +11 位作者 Yue Fan Jinlong Yang Jiaxin Liu Zhongqian Deng Zhenda Liu Zhidi Chen Jun Zhang Kangfeng Yi Yucai Su Dehui Wang Xu Deng Fei Deng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期110-138,共29页
Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them... Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities. 展开更多
关键词 superhydrophobic surface Microspheres and supraparticles Photonic devices CATALYSTS Biomedical and trace detections
下载PDF
Recent advances in preparation of metallic superhydrophobic surface by chemical etching and its applications 被引量:1
2
作者 Shitong Zhu Wenyi Deng Yaxin Su 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期221-236,共16页
In the past few decades,inspired by the superhydrophobic surfaces(SHPS)of animals and plants such as lotus leaves,rose petals,legs of water striders,and wings of butterflies,preparing metal materials with metallic SHP... In the past few decades,inspired by the superhydrophobic surfaces(SHPS)of animals and plants such as lotus leaves,rose petals,legs of water striders,and wings of butterflies,preparing metal materials with metallic SHPS(MSHPS)have attracted great research interest,due to the great prospect in practical applications.To obtain SHPS on conventional metal materials,it is necessary to construct rough surface,followed by modification with low surface energy substances.In this paper,the action mechanism and the current research status of MSHPS were reviewed through the following aspects.Firstly,the model of wetting theory was presented,and then the progress in MSHPS preparation through chemical etching method was discussed.Secondly,the applications of MSHPS in self-cleaning,anti-icing,corrosion resistance,drag reduction,oil-water separation,and other aspects were introduced.Finally,the challenges encountered in the present application of MSHPS were summarized,and the future research interests were discussed. 展开更多
关键词 METAL superhydrophobic surface Chemical etching Low adhesion SELF-CLEANING
下载PDF
Superhydrophilic–superhydrophobic patterned surfaces:From simplified fabrication to emerging applications
3
作者 Hao Chen Xiaoping Li Dachao Li 《Nanotechnology and Precision Engineering》 CAS CSCD 2022年第3期55-79,共25页
Superhydrophilic–superhydrophobic patterned surfaces constitute a branch of surface chemistry involving the two extreme states of superhydrophilicity and superhydrophobicity combined on the same surface in precise pa... Superhydrophilic–superhydrophobic patterned surfaces constitute a branch of surface chemistry involving the two extreme states of superhydrophilicity and superhydrophobicity combined on the same surface in precise patterns.Such surfaces have many advantages,including controllable wettability,enrichment ability,accessibility,and the ability to manipulate and pattern water droplets,and they offer new functionalities and possibilities for a wide variety of emerging applications,such as microarrays,biomedical assays,microfluidics,and environmental protection.This review presents the basic theory,simplified fabrication,and emerging applications of superhydrophilic–superhydrophobic patterned surfaces.First,the fundamental theories of wettability that explain the spreading of a droplet on a solid surface are described.Then,the fabrication methods for preparing superhydrophilic–superhydrophobic patterned surfaces are introduced,and the emerging applications of such surfaces that are currently being explored are highlighted.Finally,the remaining challenges of constructing such surfaces and future applications that would benefit from their use are discussed. 展开更多
关键词 superhydrophobicITY superhydrophilicITY Wettability patterns Droplet array BIOSENSOR
下载PDF
Hierarchically wood-derived integrated electrode with tunable superhydrophilic/superaerophobic surface for efficient urea electrolysis 被引量:1
4
作者 Yu Liao Songlin Deng +3 位作者 Yan Qing Han Xu Cuihua Tian Yiqiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期566-575,I0014,共11页
Conferring surfaces with superhydrophilic/superaerophobic characteristics is desirable for synthesizing efficient gas reaction catalysts.However,complicated procedures,high costs,and poor interfaces hinder commerciali... Conferring surfaces with superhydrophilic/superaerophobic characteristics is desirable for synthesizing efficient gas reaction catalysts.However,complicated procedures,high costs,and poor interfaces hinder commercialization.Here,an integrated electrode with tunable wettability derived from a hierarchically porous wood scaffold was well designed for urea oxidation reaction(UOR).Interestingly,the outer surface of the wood lumen was optimized to the preferred wettability via stoichiometry to promote electrolyte permeation and gas escape.This catalyst exhibits outstanding activity and durability for UOR in alkaline media,requiring only a potential of 1.36 V(vs.RHE)to deliver 10 m A cm^(-2)and maintain its activity without significant decay for 60 h.These experiments and theoretical calculations demonstrate that the nickel(oxy)hydroxide layer formed through surface reconstruction of nickel nanoparticles improves the active sites and intrinsic activity.Moreover,the superwetting properties of the electrode promote mass transfer by guaranteeing substantial contact with the electrolyte and accelerating the separation of gaseous products during electrocatalysis.These findings provide the understanding needed to manipulate the surface wettability through rational design and fabrication of efficient electrocatalysts for gas-evolving processes. 展开更多
关键词 Integrated electrode Wood scaffold superhydrophilic/Superaerophobic surface Urea oxidation reaction
下载PDF
Wettability Control between Oleophobic/Superhydrophilic and Superoleophilic/Superhydrophobic Characteristics on the Modified Surface Treated with Fluoroalkyl End-Capped Oligomers/Micro-Sized Polystyrene Particle Composites
5
作者 Hideo Sawada Koki Arakawa Yuta Aomi 《Open Journal of Composite Materials》 2022年第1期41-55,共15页
Fluoroalkyl end-capped vinyltrimethoxysilane-<i><span style="font-family:Verdana;">N</span></i><span><span style="font-family:Verdana;">,</span><i>&l... Fluoroalkyl end-capped vinyltrimethoxysilane-<i><span style="font-family:Verdana;">N</span></i><span><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N</span></i></span><span style="font-family:Verdana;">-dimethylacrylamide cooli</span><span style="font-family:;" "=""><span style="font-family:Verdana;">gomer [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(CH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">-CHSi(OMe)</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(CH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">-CHC(=O)NMe</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">;R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> = CF(CF</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)OC</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">F</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;">:</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;"> R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] was synthesized by reaction of fluoroalkanoyl peroxide [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-C(=O)O-O(O=)C-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] with vinyltrimethoxysilane (VM) and </span><i><span style="font-family:Verdana;">N</span></i><span><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N</span></i></span><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;">dimethylacrylamide (DMAA). The modified glass surface treated with the</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> cooligomeric nanoparticles [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] prepared under the sol-gel reaction of the cooligomer under alkaline conditions was found to exhibit an oleophobic/superhydrophilic property, although the corresponding fluorinated homooligomeric nanoparticles [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] afforded an </span><span style="font-family:Verdana;">oleophobic/hydrophobic property on the modified surface under similar </span><span style="font-family:Verdana;">con</span><span><span style="font-family:Verdana;">ditions. R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/</span><b><i><span style="font-family:Verdana;">PSt</span></i></b><span style="font-family:Verdana;"> (micro-sized</span></span> <span style="font-family:Verdana;">polystyrene particles) composites, which were prepared by the sol-gel reac</span><span style="font-family:Verdana;">tions of the corresponding homooligomer and cooligomer in the presence of </span><b><i><span style="font-family:Verdana;">PSt </span></i></b><span style="font-family:Verdana;">particle under alkaline conditions, provided an oleophobic/superhydrophilic </span><span style="font-family:Verdana;">property on the modified surface. However, it was demonstrated that the</span><span><span style="font-family:Verdana;"> surface wettability on the modified surface treated with the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-</span></span><span><span style="font-family:Verdana;">SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/</span><b><i><span style="font-family:Verdana;">PSt</span></i></b><span style="font-family:Verdana;"> composites changes dramatically from oleophobic/superhydrophilic to superoleophilic/superhydrophilic </span><span style="font-family:Verdana;">and superoleophilic/superhydrophobic characteristics, increasing with </span><span style="font-family:Verdana;">greater </span><span><span style="font-family:Verdana;">feed ratios (mg/mg) of the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> homooligomer in homooligo</span></span><span style="font-family:Verdana;">mer/cooligo</span></span><span style="font-family:Verdana;">mer from 0 to 100 in the preparation of the composites. Such controlled surfac</span> 展开更多
关键词 Fluorinated Oligomeric Composite Micro-Sized Polystyrene Particle surface Modification surface Wettability Change Oleophobic/superhydrophilic Property Superoleophilic/superhydrophobic Property
下载PDF
Triboelectric‘electrostatic tweezers'for manipulating droplets on lubricated slippery surfaces prepared by femtosecond laser processing
6
作者 Jiale Yong Xinlei Li +5 位作者 Youdi Hu Yubin Peng Zilong Cheng Tianyu Xu Chaowei Wang Dong Wu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期411-426,共16页
The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional dr... The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs. 展开更多
关键词 triboelectric electrostatic tweezer droplet manipulation slippery surface superhydrophobic surface femtosecond laser
下载PDF
Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing 被引量:20
7
作者 Jing Li Feng Du +2 位作者 Xianli Liu Zhonghao Jiang Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第4期369-374,共6页
Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique. The convex domes on the bionic sample were fabricated by compression molding under a compressive stre... Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique. The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa. The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3μL water drop at room temperature. The measurement of the wetting property showed that the water contact angle of the unmodi- fied as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time. The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure. The structure is composed of the micro-scaled alumina columns and pores. The height of columns and the depth of pores depend on the ano- dizing time. The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT), showing a change in the wettability from hydrophobicity to su- per-hydrophobicity. This improvement in the wetting property chemical modification. is attributed to the decrease in the surface energy caused by the 展开更多
关键词 bionic surface superhydrophobicITY aluminum alloy ANODIZING
下载PDF
Superhydrophobic surface of Mg alloys:A review 被引量:26
8
作者 M.Yeganeh N.Mohammadi 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第1期59-70,共12页
In the present review,the formation of superhydrophobic(SHP)structures on the surface of Mg alloys was investigated.Different methods including hydrothermal technique,chemical and electrochemical deposition,conversion... In the present review,the formation of superhydrophobic(SHP)structures on the surface of Mg alloys was investigated.Different methods including hydrothermal technique,chemical and electrochemical deposition,conversion and polymer coating,and etching routes were discussed.The superhydrophobicity could form on the surface of Mg alloys by the application of different chemical,electrochemical,and physical methods followed by the immersion of these alloys in the solution containing modifying agents including fatty acids or long-chain molecules.The formed morphology,composition,and contact angle were reported and the effect of synthesis route on these characteristics was reviewed. 展开更多
关键词 Mg alloys superhydrophobic surfaces Chemical deposition Electrochemical coating Conversion coating Polymer coating ETCHING
下载PDF
Fabrication of Superhydrophobic Surfaces on Aluminum Alloy Via Electrodeposition of Copper Followed by Electrochemical Modification 被引量:5
9
作者 Ying Huang D.K.Sarkar X-Grant Chen 《Nano-Micro Letters》 SCIE EI CAS 2011年第3期160-165,共6页
Superhydrophobic aluminum surfaces have been prepared by means of electrodeposition of copper on aluminum surfaces, followed by electrochemical modification using stearic acid organic molecules. Scanning electron micr... Superhydrophobic aluminum surfaces have been prepared by means of electrodeposition of copper on aluminum surfaces, followed by electrochemical modification using stearic acid organic molecules. Scanning electron microscopy(SEM) images show that the electrodeposited copper films follow "island growth mode" in the form of microdots and their number densities increase with the rise of the negative deposition potentials. At an electrodeposition potential of-0.2 V the number density of the copper microdots are found to be 4.5×104cm^(-2)that are increased to 2.9×105cm^(-2)at a potential of-0.8 V. Systematically, the distances between the microdots are found to be reduced from 26.6 μm to 11.03 μm with the increase of negative electrochemical potential from-0.2 V to-0.8 V. X-ray diffraction(XRD) analyses have confirmed the formation of copper stearate on the stearic acid modified copper films. The roughness of the stearic acid modified electrodeposited copper films is found to increase with the increase in the density of the copper microdots. A critical copper deposition potential of-0.6 V in conjunction with the stearic acid modification provides a surface roughness of 6.2 μm with a water contact angle of 157?, resulting in superhydrophobic properties on the aluminum substrates. 展开更多
关键词 superhydrophobic aluminum surface Water contact angle Copper microdots surface roughness Electrochemical modification
下载PDF
Synthesis of Biomimetic Superhydrophobic Surface through Electrochemical Deposition on Porous Alumina 被引量:3
10
作者 Jiadao Wang Ang Li Haosheng Chen Darong Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第2期122-128,共7页
The superhydrophobicity of plant leaves is a benefit of the hierarchical structures of their surfaces. These structures have been imitated in the creation of synthetic surfaces. In this paper, a novel process for fabr... The superhydrophobicity of plant leaves is a benefit of the hierarchical structures of their surfaces. These structures have been imitated in the creation of synthetic surfaces. In this paper, a novel process for fabrication of biomimetic hierarchical structures by electrochemical deposition of a metal on porous alumina is described. An aluminum specimen was anodically oxidized to obtain a porous alumina template, which was used as an electrode to fabricate a surface with micro structures through electrochemical deposition of a metal such as nickel and copper after the enlargement of pores. Astonishingly, a hier- archical structure with nanometer pillars and micrometer clusters was synthesized in the pores of the template. The nanometer pillars were determined by the nanometer pores. The lbrmation of micrometer clusters was related to the thin walls of the pores and the crystallization of the metal on a flat surface. From the as-prepared biomimetic surfaces, lotus-leaf-like superhydrophobic surfaces with nickel and copper deposition were achieved. 展开更多
关键词 porous alumina electrochemical deposition anodization superhydrophobic surface bioinspired hierarchical structure
下载PDF
Fabrication of Superhydrophobic Aluminum Plate by Surface Etching and Fluorosilane Modification 被引量:1
11
作者 YIN Shi-heng ZHU Bin +2 位作者 LIU Yun-chun YANG Ji KUANG Tong-chun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第5期903-906,共4页
Superhydrophobic aluminum surfaces with a high water contact angle and low sliding angle on aluminum plate substrate were fabricated by means of surface etching with sodium hydroxide under ultrasonic bathing and then ... Superhydrophobic aluminum surfaces with a high water contact angle and low sliding angle on aluminum plate substrate were fabricated by means of surface etching with sodium hydroxide under ultrasonic bathing and then modification with fluorosilane. Scanning electron microscopy(SEM) showed a honeycomb-like structure on aluminum substrate surface after etching under ultrasonic bathing. And the surface was rendered from superhydrophilicity to superhydrophobicity after further modification with fluorosilane. 展开更多
关键词 superhydrophobicITY Aluminum surface etching FLUOROSILANE
下载PDF
A Review: Natural Superhydrophobic Surfaces and Applications 被引量:2
12
作者 Mengru Jin Qianli Xing Zikang Chen 《Journal of Biomaterials and Nanobiotechnology》 2020年第2期110-149,共40页
As the mimic biology becomes more and more important in the field of technology, superhydrophobic materials in the natural world have also become common. Superhydrophobic surfaces are used to prevent water droplets fr... As the mimic biology becomes more and more important in the field of technology, superhydrophobic materials in the natural world have also become common. Superhydrophobic surfaces are used to prevent water droplets from wetting themselves which contain the micro- and nano-structures named hierarchical surfaces and exhibit the high water contact angles (WCA) that are greater than 150&#730;and perfect application foreground in both our daily lives and industry. In this work, we first discuss several surface properties and their numerical models. And then we list the surface properties of a variety of natural superhydrophobic surfaces and sum up their similarities and differences. The most recent strategies of how to apply natural superhydrophobic surfaces are also introduced within the past several years. In addition, we talk about the limitations of the current generation of superhydrophobic surfaces and prospects which looks for solutions to the problems. This review aims to enable researchers to learn more about the principles and mechanisms of superhydrophobicity and perceive the new methods for creating and modifying it. 展开更多
关键词 superhydrophobic surface WETTING Models BIOMIMETIC Application ADHESION
下载PDF
ELECTROSPRAYING/ELECTROSPINNING OF POLY(γ-STEARYL-LGLUTAMATE):FORMATION OF SURFACES WITH SUPERHYDROPHOBICITY 被引量:1
13
作者 吴健 徐志康 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第1期115-120,共6页
Electrospraying/electrospinning of poly(γ-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform.Field emission scanning electron microscopy (FESEM) and attenua... Electrospraying/electrospinning of poly(γ-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform.Field emission scanning electron microscopy (FESEM) and attenuated Iotal reflectance Fourier transform infrared spectroscopy (FT-IR/ATR) were used to characterize the morphology and structure of the electrosprayed/electrospun polypeptide mats.It was found that electrospraying of PSLG with concentrations lower than 16 wt% afforded beads,while microfibers cou... 展开更多
关键词 Electrospinning/electrospraying Poly(γ-stearyl-L-glutamate) POLYPEPTIDE Water contact angle superhydrophobic surface
下载PDF
Simple Fabrication of Hierarchical Micro/Nanostructure Superhydrophobic Surface with Stable and Superior Anticorrosion Silicon Steel via Laser Marking Treatment 被引量:2
14
作者 FU Jing TANG Mingkai ZHANG Qiaoxin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期411-417,共7页
To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-sca... To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-scale hump and sheet-like nanostructure was successfully prepared on silicon steel by a simple,efficient and facile operation in large-area laser marking treatment.The morphology,composition,wettability of the as-prepared surface were studied.The superhydrophobic performance of the surface was investigated as well.Additionally,the corrosion resistance of the superhydrophobic surface to acidic solutions at room temperature and alkaline solutions at high temperature (80 ℃) was carefully explored.The corrosion resistance mechanism was clarified.Moreover,considering the practical application of the surface in the future,the hardness of the hierarchical micro/nanostructure superhydrophobic surface was studied.The experimental results indicate that the hierarchical micro/nanostructure surface with texture spacing of 100 μm treated at laser scanning speed of 100 mms/ presents superior superhydrophobicity after decreasing surface energy.The contact angle can be as high as 156.6°.Additionally,the superhydrophobic surface provide superior and stable anticorrosive protection for silicon steel in various corrosive environments.More importantly,the prepared structure of the surface shows high hardness,which ensures that the surface of the superhydrophobic surface cannot be destroyed easily.The surface is able to maintain great superhydrophobic performance when it suffers from slight impacting and abrasion. 展开更多
关键词 silicon steel laser marking hierarchical micro/nanostructure superhydrophobic surface corrosion resistance
下载PDF
Influence of Weather Conditions on the Surface Morphology and Wetting Behaviour of Superhydrophobic Quaking Aspen Leaves 被引量:1
15
作者 J. J. Victor U. Erb 《American Journal of Plant Sciences》 2013年第5期61-68,共8页
The effects of different environmental conditions on the wetting properties and surface morphology of surperhydrophobic quaking aspen leaves harvested during the 2011 growth season are examined. During this particular... The effects of different environmental conditions on the wetting properties and surface morphology of surperhydrophobic quaking aspen leaves harvested during the 2011 growth season are examined. During this particular season quaking aspen leaves were not able to retain their superhydrophobic properties and associated surface structure features as they have usually been able to do in other years. Representative scanning electron microscopy images and wetting property measurements of quaking aspen leaf surfaces harvested throughout this season are presented and discussed with the objective of linking weather induced environmental stresses that occurred in 2011 to the sudden and unusual reduction in non-wetting properties and drastic changes in leaf surface structure. Erosion and regeneration rates of leaf wax crystals and the impact that environmental factors can have on these are considered and used to explain the occurrence of these unexpected changes. 展开更多
关键词 Quaking ASPEN LEAVES superhydrophobic surface Structure WAX Crystal Erosion/Regeneration WEATHER Conditions
下载PDF
Fabrication and Wettable Investigation of Superhydrophobic Surface by Soft Lithography
16
作者 李刚 LI Zhigang +2 位作者 LU Liming XIE Long DENG Chunsheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期138-141,共4页
The natural hydrophobicity of surfaces can be enhanced if they are microtextured due to air trapped in the structure, which provides the deposited drop with a composite surface made of solid and air on which it is res... The natural hydrophobicity of surfaces can be enhanced if they are microtextured due to air trapped in the structure, which provides the deposited drop with a composite surface made of solid and air on which it is rest. Here, a series of grating microstructure surfaces with different parameters have been designed and fabricated by a novel soft lithography. The water contact angles (WCA) on these rough surfaces are measured through optical contact angle meter. The results indicate that all the WCA on the surfaces with grating microstructures are up to 150~; WCA increases and the hydrophobic performance also enhances with the decrease of the ridge width under the other fixed parameter condition; Experimental data obtained basically consists with the Cassie's theoretical prediction. The effects of geometric parameters of the microstructures on wettability of the grating sufaces are investigated. 展开更多
关键词 MICROTEXTURE superhydrophobicITY composite surface WETTABILITY bearing lubrication
下载PDF
Fabrication of Stable Superhydrophobic Cupric Hydroxide Surface with Hierarchical Structure on Copper Substrate
17
作者 刘红芹 徐文国 卢士香 《Journal of Beijing Institute of Technology》 EI CAS 2009年第3期339-344,共6页
Cupric hydroxide films with a new hierarchical architecture consisting of beautiful nanotubes and nanoflowers were directly fabricated on copper substrate via a solution-immersion process at a constant temperature of ... Cupric hydroxide films with a new hierarchical architecture consisting of beautiful nanotubes and nanoflowers were directly fabricated on copper substrate via a solution-immersion process at a constant temperature of 23 ℃. Stable superhydrophobic Cu(OH)2 surface was obtained after Cu(OH)2 films were modified with hydrolyzed 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane (CsH4CI3F13Si, FOTMS). The surface morphology and composition of the film were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. Result shows that the surface of Cu(OH)2 films directly grown on copper substrate was hydrophilic, whereas the modified Cu(OH)2 films exhibited the superhydrophobicity with a water contact angle (CA) of about 160.8°, as well as a small sliding angle (SA) of about 1°. The special hierarchical structure, along with the slow surface energy leads to the high superhydrophobicity of the surface. 展开更多
关键词 Cu(OH)2 films hierarchical architecture superhydrophobic surface contact angle
下载PDF
Early Season Development of Micro/Nano-Morphology and Superhydrophobic Wetting Properties on Aspen Leaf Surfaces
18
作者 George Christopher Tranquada Jared Jennings Victor Uwe Erb 《American Journal of Plant Sciences》 2015年第13期2197-2208,共12页
The rapid growth and early development period of the dual-scale surface topography was studied on the adaxial leaf surfaces of two aspen tree species with non-wetting leaves: the columnar European aspen (Populus tremu... The rapid growth and early development period of the dual-scale surface topography was studied on the adaxial leaf surfaces of two aspen tree species with non-wetting leaves: the columnar European aspen (Populus tremula “Erecta”) and quaking aspen (Populus tremuloides). Particular attention was focused on the formation of micro- and nano-scale asperities on their cuticles, which was correlated with the development of superhydrophobic wetting behaviour. Measurements of the wetting properties (contact angle and tilt-angle) provided an indication of the degree of hydrophobicity of their cuticles. Scanning electron microscopy and optical profilometry micrographs were used to follow the growth and major morphological changes of micro-scale papillae and nano-scale epicuticular wax (ECW) crystals, which led to a significant improvement in non-wetting behaviour. Both species exhibited syntopism in the form of small and larger nano-scale ECW platelet morphologies. These findings provide additional support for earlier suggestions that due to fluctuations in leaf hydrophobicity throughout the growing season, canopy storage capacity may also vary considerably throughout this time period. 展开更多
关键词 COLUMNAR European ASPEN LEAVES DEVELOPMENT of superhydrophobic Leaf surfaces Epicuticular WAX Morphologies Nano-Scale WAX Crystals Quaking ASPEN LEAVES
下载PDF
Application of Superhydrophobic Surface on Boiling Heat Transfer Characteristics of Nanofluids
19
作者 Cong Qi Yuxing Wang +2 位作者 Zi Ding Jianglin Tu Mengxin Zhu 《Energy Engineering》 EI 2021年第4期825-852,共28页
Boiling heat transfer is a mode using the phase change of working medium to strengthen the heat exchange due to its good heat exchange capability,and it is widely used in heat exchange engineering.Nanofluids have been... Boiling heat transfer is a mode using the phase change of working medium to strengthen the heat exchange due to its good heat exchange capability,and it is widely used in heat exchange engineering.Nanofluids have been used in the direction of enhanced heat transfer for their superior thermophysical property.The wetting,spreading and ripple phenomena of superhydrophobic surfaces widely exist in nature and daily life.It has great application value for engineering technology.In this article,the boiling heat exchange characteristics of nanofluids on superhydrophobic surface are numerically studied.It was found that with the increase of superheating degree,the steam volume ratio of unmodified heated surface increases to saturation,while the steam volume and evaporation ratio of modified superhydrophobic surface increase firstly and then decrease.At the same time,bubbles are generated and accumulated more fully on superhydrophobic surface.It was also found that nanofluids with low viscosity are more affected by superhydrophobic surface characteristics,and the increase is more significant with high superheating degree,and the superhydrophobic surface is beneficial to enhancing boiling heat exchange.Compared with the simulation results,it could be concluded that the boiling heat exchange performance of CuO-water nano-fluids on the modified superhydrophobic surface is better than that of CuO-ethylene glycol nanofluids under high superheating degree. 展开更多
关键词 Nanofluids superhydrophobic surface pool boiling heat transfer numerical simulation
下载PDF
Reduction of ice adhesion on nanostructured and nanoscale slippery surfaces
20
作者 Luke Haworth Deyu Yang +4 位作者 Prashant Agrawal Hamdi Torun Xianghui Hou Glen McHale Yongqing Fu 《Nanotechnology and Precision Engineering》 CAS CSCD 2023年第1期56-62,共7页
Ice nucleation and accretion on structural surfaces are sources of major safety and operational concerns in many industries including aviation and renewable energy.Common methods for tackling these are active ones suc... Ice nucleation and accretion on structural surfaces are sources of major safety and operational concerns in many industries including aviation and renewable energy.Common methods for tackling these are active ones such as heating,ultrasound,and chemicals or passive ones such as surface coatings.In this study,we explored the ice adhesion properties of slippery coated substrates by measuring the shear forces required to remove a glaze ice block on the coated substrates.Among the studied nanostructured and nanoscale surfaces[i.e.,a superhydrophobic coating,a fluoropolymer coating,and a polydimethylsiloxane(PDMS)chain coating],the slippery omniphobic covalently attached liquid(SOCAL)surface with its flexible polymer brushes and liquid-like structure significantly reduced the ice adhesion on both glass and silicon surfaces.Further studies of the SOCAL coating on roughened substrates also demonstrated its low ice adhesion.The reduction in ice adhesion is attributed to the flexible nature of the brush-like structures of PDMS chains,allowing ice to detach easily. 展开更多
关键词 HYDROPHOBIC superhydrophobic Polymer surface Ice adhesion WETTABILITY SOCAL
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部