Increased nighttime respiratory losses decrease the amount of photoassimilates available for plant growth and yield. We hypothesized that the increased respiratory carbon loss under high night temperatures(HNT) could ...Increased nighttime respiratory losses decrease the amount of photoassimilates available for plant growth and yield. We hypothesized that the increased respiratory carbon loss under high night temperatures(HNT) could be compensated for by increased photosynthesis during the day following HNT exposure. Two rice genotypes, Vandana(HNT-sensitive) and Nagina 22(HNT-tolerant), were exposed to HNT(4 ℃ above the control) from flowering to physiological maturity. They were assessed for alterations in the carbon balance of the source(flag leaf) and its subsequent impact on grain filling dynamics and the quality of spatially differentiated sinks(superior and inferior spikelets). Both genotypes exhibited significantly higher night respiration rates. However, only Nagina 22 compensated for the high respiration rates with an increased photosynthetic rate, resulting in a steady production of total dry matter under HNT. Nagina 22 also recorded a higher grain-filling rate, particularly at 5 and 10 d after flowering, with 1.5- and 4.0-fold increases in the translocation of ^(14)C sugars to the superior and inferior spikelets, respectively. The ratio of photosynthetic rate to respiratory rate on a leaf area basis was negatively correlated with spikelet sterility, resulting in a higher filled spikelet number and grain weight per plant, particularly for inferior grains in Nagina 22. Grain quality parameters such as head rice recovery, high-density grains, and gelatinization temperature were maintained in Nagina 22. An increase in the rheological properties of rice flour starch in Nagina 22 under HNT indicated the stability of starch and its ability to reorganize during the cooling process of product formation. Thus, our study showed that sink adjustments between superior and inferior spikelets favored the growth of inferior spikelets, which helped to offset the reduction in grain weight under HNT in the tolerant genotype Nagina 22.展开更多
The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain fill...The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed.Four super rice cultivars,Liangyoupeijiu,IIyou 084,Huaidao 9 and Wujing 15,and two high-yielding and elite check cultivars,Shanyou 63 and Yangfujing 8,were used.The activities of sucrose synthase (SuSase),adenosine diphosphoglucose pyrophosphorylase (AGPase),starch synthase (StSase) and starch branching enzyme (SBE),and the concentrations of zeatin + zeatin riboside (Z + ZR),indole-3-acetic acid (IAA) and abscisic acid (ABA) in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed.Maximum grain filling rate,the time reaching the maximum grain-filling rate,mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars,but were significantly lower in the super rice than in the check rice for inferior spikelets.Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period.The peak values and the mean activities of SuSase,AGPase,StSase and SBE were lower in inferior spikelets than in superior ones,as well as the peak values and the mean concentrations of Z + ZR and IAA.However,the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice.The grain filling rate was positively and significantly correlated with the activities of SuSase,AGPase and StSase and the concentrations of Z + ZR and IAA.The results suggested that the low activities of SuSase,AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain filling rate and light grain weight of inferior spikelets in super rice.展开更多
The difference in accumulation of high molecular weight glutenin subunits (HMW-GS) in superior and inferior grains results in the non-uniformity of grain quality in winter wheat (Triticum aestivum L.). The HMW-GS ...The difference in accumulation of high molecular weight glutenin subunits (HMW-GS) in superior and inferior grains results in the non-uniformity of grain quality in winter wheat (Triticum aestivum L.). The HMW-GS accumulation and glutenin macropolymer (GMP) content were studied in superior and inferior grains during the grain filling period, using the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Compared to inferior grains, HMW-GS was formed earlier and total accumulation amount was higher in superior grains. The total HMW-GS content was higher in superior grain than that in inferior grain except at maturity. For individual HMW-GS types, the accumulation and content of subunit 7 were the highest, followed by subunit 12, while that of subunit 8 were the lowest, followed by subunit 2 in superior grain. In contrary, the accumulation and content of subunit 7 at maturity were significantly higher than subunit 8, but they were similar between subunit 2 and subunit 12 in inferior grain. Moreover, the accumulation of subunit 7 and 12 in superior grain were significantly higher than that in inferior grain. However, compared to the inferior grain, the GMP accumulation was higher, while content was lower in superior grain at maturity.展开更多
基金the financial assistance provided by ICAR-IARI in the form of IARI Fellowship and Department of Science and Technology, Innovation in Science Pursuit for Inspired Research during the PhD programme。
文摘Increased nighttime respiratory losses decrease the amount of photoassimilates available for plant growth and yield. We hypothesized that the increased respiratory carbon loss under high night temperatures(HNT) could be compensated for by increased photosynthesis during the day following HNT exposure. Two rice genotypes, Vandana(HNT-sensitive) and Nagina 22(HNT-tolerant), were exposed to HNT(4 ℃ above the control) from flowering to physiological maturity. They were assessed for alterations in the carbon balance of the source(flag leaf) and its subsequent impact on grain filling dynamics and the quality of spatially differentiated sinks(superior and inferior spikelets). Both genotypes exhibited significantly higher night respiration rates. However, only Nagina 22 compensated for the high respiration rates with an increased photosynthetic rate, resulting in a steady production of total dry matter under HNT. Nagina 22 also recorded a higher grain-filling rate, particularly at 5 and 10 d after flowering, with 1.5- and 4.0-fold increases in the translocation of ^(14)C sugars to the superior and inferior spikelets, respectively. The ratio of photosynthetic rate to respiratory rate on a leaf area basis was negatively correlated with spikelet sterility, resulting in a higher filled spikelet number and grain weight per plant, particularly for inferior grains in Nagina 22. Grain quality parameters such as head rice recovery, high-density grains, and gelatinization temperature were maintained in Nagina 22. An increase in the rheological properties of rice flour starch in Nagina 22 under HNT indicated the stability of starch and its ability to reorganize during the cooling process of product formation. Thus, our study showed that sink adjustments between superior and inferior spikelets favored the growth of inferior spikelets, which helped to offset the reduction in grain weight under HNT in the tolerant genotype Nagina 22.
基金supported by the grants from the National Natural Science Foundation of China(NSFC-IRRI Joint Research Project 31061140457)General Project (Grant Nos. 31071360 and 31271641)+2 种基金the National Basic Research Program (Grant No.2009CB118603)the National Key Technology Support Program of China (Grant Nos. 2011BAD16B14 and 2012BAD04B08)the Basic Scientific Research Special Operation Cost of the Central Research Institutions in 2011 (Grant No. 201103003)
文摘The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed.Four super rice cultivars,Liangyoupeijiu,IIyou 084,Huaidao 9 and Wujing 15,and two high-yielding and elite check cultivars,Shanyou 63 and Yangfujing 8,were used.The activities of sucrose synthase (SuSase),adenosine diphosphoglucose pyrophosphorylase (AGPase),starch synthase (StSase) and starch branching enzyme (SBE),and the concentrations of zeatin + zeatin riboside (Z + ZR),indole-3-acetic acid (IAA) and abscisic acid (ABA) in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed.Maximum grain filling rate,the time reaching the maximum grain-filling rate,mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars,but were significantly lower in the super rice than in the check rice for inferior spikelets.Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period.The peak values and the mean activities of SuSase,AGPase,StSase and SBE were lower in inferior spikelets than in superior ones,as well as the peak values and the mean concentrations of Z + ZR and IAA.However,the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice.The grain filling rate was positively and significantly correlated with the activities of SuSase,AGPase and StSase and the concentrations of Z + ZR and IAA.The results suggested that the low activities of SuSase,AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain filling rate and light grain weight of inferior spikelets in super rice.
基金This study is supported by the projects of Priority Academic Program Developmem (PAPD), the National Natural Science Foundation of China (31171484, 31471445), the National Natural Science Foundation for Distinguished Young Scientists (31325020), Jiangsu Agriculture Science and Technology Innovation Fund (CX (14) 2002), the Specialized Research Fund for the Doctoral Program of Higher Education (20090097110009), the National Non-profit Program by Ministry of Agriculture (200903003), and the China Agriculture Research System (CARS-03).
文摘The difference in accumulation of high molecular weight glutenin subunits (HMW-GS) in superior and inferior grains results in the non-uniformity of grain quality in winter wheat (Triticum aestivum L.). The HMW-GS accumulation and glutenin macropolymer (GMP) content were studied in superior and inferior grains during the grain filling period, using the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Compared to inferior grains, HMW-GS was formed earlier and total accumulation amount was higher in superior grains. The total HMW-GS content was higher in superior grain than that in inferior grain except at maturity. For individual HMW-GS types, the accumulation and content of subunit 7 were the highest, followed by subunit 12, while that of subunit 8 were the lowest, followed by subunit 2 in superior grain. In contrary, the accumulation and content of subunit 7 at maturity were significantly higher than subunit 8, but they were similar between subunit 2 and subunit 12 in inferior grain. Moreover, the accumulation of subunit 7 and 12 in superior grain were significantly higher than that in inferior grain. However, compared to the inferior grain, the GMP accumulation was higher, while content was lower in superior grain at maturity.