The existence and stability of multipeaked solitons are investigated in a parity-time symmetric superlattice with dual periods under both self-focusing and self-defocusing nonlinearity. For self-defocusing nonlinearit...The existence and stability of multipeaked solitons are investigated in a parity-time symmetric superlattice with dual periods under both self-focusing and self-defocusing nonlinearity. For self-defocusing nonlinearity, dipole solitons with low power and all the odd-peak solitons can exist stably in the first gap, while dipole solitons with high power and even-peak (except two) solitons are unstable. For self-focusing nonlinearity, even-peak out-of-phase solitons can propagate stably in the infinite gap, while odd-peak in-phase solitons are unstable.展开更多
Aqueous zinc-ion batteries(AZIBs)have attracted widespread attention due to their intrinsic merits of low cost and high safety.However,the poor thermodynamic stability of Zn metal in aqueous electrolytes inevitably ca...Aqueous zinc-ion batteries(AZIBs)have attracted widespread attention due to their intrinsic merits of low cost and high safety.However,the poor thermodynamic stability of Zn metal in aqueous electrolytes inevitably cause Zn dendrites growth and interface parasitic side reactions,resulting in unsatisfactory cycling stability and low Zn utilization.Replacing Zn anode with intercalation-type anodes have emerged as a promising alternative strategy to overcome the above issues but the lack of appropriate anode materials is becoming the bottleneck.Herein,the interlayer structure of MoSe_(2) anode is preintercalated with long-chain polyvinyl pyrrolidone(PVP),constructing a periodically stacked p-MoSe_(2)superlattice to activate the reversible Zn^(2+) storage performance(203 mAh g^(−1)at 0.2 A g^(−1)).To further improve the stability of the superlattice structure during cycling,the electrolyte is also rationally designed by adding 1,4-Butyrolactone(γ-GBL)additive into 3 M Zn(CF_(3)SO_(3))_(2),in whichγ-GBL replaces the H2O in Zn^(2+) solvation sheath.The preferential solvation ofγ-GBL with Zn^(2+)effectively reduces the water activity and helps to achieve an ultra-long lifespan of 12,000 cycles for p-MoSe_(2).More importantly,the reconstructed solvation structure enables the operation of p-MoSe_(2)||ZnxNVPF(Na3V2(PO4)2O_(2)F)AZIBs at an ultra-low temperature of−40°C,which is expected to promote the practical applications of AZIBs.展开更多
In this paper, we report a passively mode-locked Nd∶Y3Sc2Al3O12(Nd:YSAG) laser using a periodically poled Li Nb O3(PPLN)superlattice. Nonlinear mirror mode locking based on PPLN intracavity frequency doubling was the...In this paper, we report a passively mode-locked Nd∶Y3Sc2Al3O12(Nd:YSAG) laser using a periodically poled Li Nb O3(PPLN)superlattice. Nonlinear mirror mode locking based on PPLN intracavity frequency doubling was theoretically analyzed. The modulation depth of nonlinear reflectivity of the nonlinear mirror is approximately 8.8%. Optical performances of the modelocked laser including output power, radio frequency spectrum, and optical spectrum were experimentally investigated. An average output power of 710 m W with a slope efficiency of 14.6% was obtained at the pump power of 6.5 W. The repetition rate is 101.7 MHz, and the signal-to-noise ratio of the mode-locked pulse is 45 d B. The mode-locked pulse width was approximately 9 ps.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61308019the Foundation for Distinguished Young Scholars in Higher Education of Guangdong Province under Grant No Yq2013157
文摘The existence and stability of multipeaked solitons are investigated in a parity-time symmetric superlattice with dual periods under both self-focusing and self-defocusing nonlinearity. For self-defocusing nonlinearity, dipole solitons with low power and all the odd-peak solitons can exist stably in the first gap, while dipole solitons with high power and even-peak (except two) solitons are unstable. For self-focusing nonlinearity, even-peak out-of-phase solitons can propagate stably in the infinite gap, while odd-peak in-phase solitons are unstable.
基金National Natural Science Foundation of China,Grant/Award Numbers:22109030,22021001Fundamental Research Funds for the Central Universities,Grant/Award Number:20720220073+1 种基金The Key Research and Development Program of Yunnan Province,Grant/Award Number:202103AA080019Fujian Industrial Technology Development,and Application Plan,Grant/Award Number:2022I0002。
文摘Aqueous zinc-ion batteries(AZIBs)have attracted widespread attention due to their intrinsic merits of low cost and high safety.However,the poor thermodynamic stability of Zn metal in aqueous electrolytes inevitably cause Zn dendrites growth and interface parasitic side reactions,resulting in unsatisfactory cycling stability and low Zn utilization.Replacing Zn anode with intercalation-type anodes have emerged as a promising alternative strategy to overcome the above issues but the lack of appropriate anode materials is becoming the bottleneck.Herein,the interlayer structure of MoSe_(2) anode is preintercalated with long-chain polyvinyl pyrrolidone(PVP),constructing a periodically stacked p-MoSe_(2)superlattice to activate the reversible Zn^(2+) storage performance(203 mAh g^(−1)at 0.2 A g^(−1)).To further improve the stability of the superlattice structure during cycling,the electrolyte is also rationally designed by adding 1,4-Butyrolactone(γ-GBL)additive into 3 M Zn(CF_(3)SO_(3))_(2),in whichγ-GBL replaces the H2O in Zn^(2+) solvation sheath.The preferential solvation ofγ-GBL with Zn^(2+)effectively reduces the water activity and helps to achieve an ultra-long lifespan of 12,000 cycles for p-MoSe_(2).More importantly,the reconstructed solvation structure enables the operation of p-MoSe_(2)||ZnxNVPF(Na3V2(PO4)2O_(2)F)AZIBs at an ultra-low temperature of−40°C,which is expected to promote the practical applications of AZIBs.
基金supported by the National Key Research and Development Project of China (No. 2019YFA0705000)the National Natural Science Foundation of China (Nos. 91950106, 11404196, 11525418, 91750201, and 11974218)+1 种基金the Innovation Group of Jinan (2018GXRC010)the Local Science and Technology Development Project of the Central Government (No. YDZX20203700001766)
文摘In this paper, we report a passively mode-locked Nd∶Y3Sc2Al3O12(Nd:YSAG) laser using a periodically poled Li Nb O3(PPLN)superlattice. Nonlinear mirror mode locking based on PPLN intracavity frequency doubling was theoretically analyzed. The modulation depth of nonlinear reflectivity of the nonlinear mirror is approximately 8.8%. Optical performances of the modelocked laser including output power, radio frequency spectrum, and optical spectrum were experimentally investigated. An average output power of 710 m W with a slope efficiency of 14.6% was obtained at the pump power of 6.5 W. The repetition rate is 101.7 MHz, and the signal-to-noise ratio of the mode-locked pulse is 45 d B. The mode-locked pulse width was approximately 9 ps.