Moiré superlattices(MSLs) are modulated structures produced from homogeneous or heterogeneous two-dimensional layers stacked with a twist angle and/or lattice mismatch. Enriching the methods for fabricating MSL a...Moiré superlattices(MSLs) are modulated structures produced from homogeneous or heterogeneous two-dimensional layers stacked with a twist angle and/or lattice mismatch. Enriching the methods for fabricating MSL and realizing the unique emergent properties are key challenges in its investigation. Here we recommend that the spiral dislocation driven growth is another optional method for the preparation of high quality MSL samples. The spiral structure stabilizes the constant out-of-plane lattice distance, causing the variations in electronic and optical properties. Taking SnS_(2) MSL as an example, we find prominent properties including large band gap reduction(~ 0.4 e V) and enhanced optical activity. Firstprinciples calculations reveal that these unusual properties can be ascribed to the locally enhanced interlayer interaction associated with the Moiré potential modulation. We believe that the spiral dislocation driven growth would be a powerful method to expand the MSL family and broaden their scope of application.展开更多
Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy togeth...Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.展开更多
We investigate the peak structure in the interlayer conductance of Moirésuperlattices using a tunneling theory wedeveloped previously.The theoretical results predict that,due to the resonance of two different par...We investigate the peak structure in the interlayer conductance of Moirésuperlattices using a tunneling theory wedeveloped previously.The theoretical results predict that,due to the resonance of two different partial waves,the doublepeakstructure can appear in the curve of the interlayer conductance versus twist angle.Furthermore,we study the influencesof the model parameters,i.e.,the chemical potential of electrodes,the thickness of Moirésuperlattice,and the strength ofinterface potential,on the peak structure of the interlayer conductance.In particular,the parameter dependence of the peakstructure is concluded via a phase diagram,and the physical meanings of the phase diagram is formulized.Finally,thepotential applications of the present work is discussed.展开更多
A new theoretical method to study super-multiperiod superlattices has been developed.The method combines the precision of the 8-band kp-method with the flexibility of the shooting method and the Monte Carlo approach.T...A new theoretical method to study super-multiperiod superlattices has been developed.The method combines the precision of the 8-band kp-method with the flexibility of the shooting method and the Monte Carlo approach.This method was applied to examine the finest quality samples of super-multiperiod Al_(0.3)Ga_(0.7)As/GaAs superlattices grown by molecular beam epitaxy.The express photoreflectance spectroscopy method was utilized to validate the proposed theoretical method.For the first time,the accurate theoretical analysis of the energy band diagram of super-multiperiod superlattices with experimental verification has been conducted.The proposed approach highly accurately determines transition peak positions and enables the calculation of the energy band diagram,transition energies,relaxation rates,and gain estimation.It has achieved a remarkably low 5%error compared to the commonly used method,which typically results in a 25%error,and allowed to recover the superlattice parameters.The retrieved intrinsic parameters of the samples aligned with XRD data and growth parameters.The proposed method also accurately predicted the escape of the second energy level for quantum well thicknesses less than 5 nm,as was observed in photoreflectance experiments.The new designs of THz light-emitting devices operating at room temperature were suggested by the developed method.展开更多
Moiré superlattices are formed when overlaying two materials with a slight mismatch in twist angle or lattice constant. They provide a novel platform for the study of strong electronic correlations and non-trivia...Moiré superlattices are formed when overlaying two materials with a slight mismatch in twist angle or lattice constant. They provide a novel platform for the study of strong electronic correlations and non-trivial band topology, where emergent phenomena such as correlated insulating states, unconventional superconductivity, and quantum anomalous Hall effect are discovered. In this review, we focus on the semiconducting transition metal dichalcogenides(TMDs) based moiré systems that host intriguing flat-band physics. We first review the exfoliation methods of two-dimensional materials and the fabrication technique of their moiré structures. Secondly, we overview the progress of the optically excited moiré excitons, which render the main discovery in the early experiments on TMD moiré systems. We then introduce the formation mechanism of flat bands and their potential in the quantum simulation of the Hubbard model with tunable doping, degeneracies, and correlation strength. Finally, we briefly discuss the challenges and future perspectives of this field.展开更多
Anderson localization of phonons is a kind of phonon wave effect,which has been proved to occur in many structures with disorders.In this work,we introduced aperiodicity to boron nitride/carbon nanotube superlattices(...Anderson localization of phonons is a kind of phonon wave effect,which has been proved to occur in many structures with disorders.In this work,we introduced aperiodicity to boron nitride/carbon nanotube superlattices(BN/C NT SLs),and used molecular dynamics to calculate the thermal conductivity and the phonon transmission spectrum of the models.The existence of phonon Anderson localization was proved in this quasi one-dimensional structure by analyzing the phonon transmission spectra.Moreover,we introduced interfacial mixing to the aperiodic BN/C NT SLs and found that the coexistence of the two disorder entities(aperiodicity and interfacial mixing)can further decrease the thermal conductivity.In addition,we also showed that anharmonicity can destroy phonon localization at high temperatures.This work provides a reference for designing thermoelectric materials with low thermal conductivity by taking advantage of phonon localization.展开更多
High performance short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices on GaSb substrate have been demonstrated.At 300 K,the device exhibits a 50%cut-off wavelength of~2.1μm as predicted ...High performance short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices on GaSb substrate have been demonstrated.At 300 K,the device exhibits a 50%cut-off wavelength of~2.1μm as predicted from the band structure calculation;the device responsivity peaks at 0.85 A/W,corresponding to a quantum efficiency(QE)of 56%for 2.0μm-thick absorption region.The dark current density of 1.03×10^(-3)A/cm^(2)is obtained under 50 mV applied bias.The device exhibits a saturated dark current shot noise limited specific detectivity(D*)of 3.29×1010cm·Hz^(1/2)/W(at a peak responsivity of 2.0μm)under-50 mV applied bias.展开更多
We investigate a strain compensation method for the growth of complex interband cascade laser structures. For thick In As/Al Sb superlattice clad layers, the sublayer thicknesses were adjusted so that the tensile stra...We investigate a strain compensation method for the growth of complex interband cascade laser structures. For thick In As/Al Sb superlattice clad layers, the sublayer thicknesses were adjusted so that the tensile strain energy in the In As sublayer was equal to the compressive strain energy in the Al Sb sublayer. For the four-constituent active region, as the compressive strain in the Ga0.65In0.35Sb alloy layer was large, a tensile strain was incorporated in the chirped In As/Al Sb superlattice region for strain compensation to the Ga0.65In0.35Sb alloy. A laser structure of thickness 6 μm was grown on the Ga Sb substrate by molecular beam epitaxy. The wafer exhibited good surface morphology and high crystalline quality.展开更多
本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外...本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为中波1:6 ML InAs/7 ML GaSb和中波2:9 ML InAs/7 ML GaSb。焦平面阵列像元中心距为12μm。在80 K时测试,器件双波段的工作谱段为中波1:3~4μm,中波2:3.8~5.2μm。中波1器件平均峰值探测率达到6.32×10^(11) cm·Hz^(1/2)W^(-1),中波2器件平均峰值探测率达到2.84×10^(11) cm·Hz^(1/2)W^(-1)。红外焦平面偏压调节成像测试得到清晰的双波段成像。本文是国内首次报道1280×1024规模InAs/GaSb II类超晶格中/中波双色红外焦平面探测器。展开更多
One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ...One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.展开更多
In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of...In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1402500)the National Natural Science Foundation of China(Grant No.62125402)。
文摘Moiré superlattices(MSLs) are modulated structures produced from homogeneous or heterogeneous two-dimensional layers stacked with a twist angle and/or lattice mismatch. Enriching the methods for fabricating MSL and realizing the unique emergent properties are key challenges in its investigation. Here we recommend that the spiral dislocation driven growth is another optional method for the preparation of high quality MSL samples. The spiral structure stabilizes the constant out-of-plane lattice distance, causing the variations in electronic and optical properties. Taking SnS_(2) MSL as an example, we find prominent properties including large band gap reduction(~ 0.4 e V) and enhanced optical activity. Firstprinciples calculations reveal that these unusual properties can be ascribed to the locally enhanced interlayer interaction associated with the Moiré potential modulation. We believe that the spiral dislocation driven growth would be a powerful method to expand the MSL family and broaden their scope of application.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0719200 and 2022YFA1404004)the National Natural Science Foundation of China(Grant Nos.62322115,61988102,61975110,62335012,and 12074248)+3 种基金111 Project(Grant No.D18014)the Key Project supported by Science and Technology Commission Shanghai Municipality(Grant No.YDZX20193100004960)Science and Technology Commission of Shanghai Municipality(Grant Nos.22JC1400200 and 21S31907400)General Administration of Customs People’s Republic of China(Grant No.2019HK006)。
文摘Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Grant No.11704197)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY221066 and NY223074).
文摘We investigate the peak structure in the interlayer conductance of Moirésuperlattices using a tunneling theory wedeveloped previously.The theoretical results predict that,due to the resonance of two different partial waves,the doublepeakstructure can appear in the curve of the interlayer conductance versus twist angle.Furthermore,we study the influencesof the model parameters,i.e.,the chemical potential of electrodes,the thickness of Moirésuperlattice,and the strength ofinterface potential,on the peak structure of the interlayer conductance.In particular,the parameter dependence of the peakstructure is concluded via a phase diagram,and the physical meanings of the phase diagram is formulized.Finally,thepotential applications of the present work is discussed.
基金The work was supported by the Ministry of Education and Science of the Russian Federation in the framework of experimental research(Nos.075-01438-22-06 and FSEE-2022-0018)the Russian Science Foundation in theoretical research(No.RSF 23-29-00216).
文摘A new theoretical method to study super-multiperiod superlattices has been developed.The method combines the precision of the 8-band kp-method with the flexibility of the shooting method and the Monte Carlo approach.This method was applied to examine the finest quality samples of super-multiperiod Al_(0.3)Ga_(0.7)As/GaAs superlattices grown by molecular beam epitaxy.The express photoreflectance spectroscopy method was utilized to validate the proposed theoretical method.For the first time,the accurate theoretical analysis of the energy band diagram of super-multiperiod superlattices with experimental verification has been conducted.The proposed approach highly accurately determines transition peak positions and enables the calculation of the energy band diagram,transition energies,relaxation rates,and gain estimation.It has achieved a remarkably low 5%error compared to the commonly used method,which typically results in a 25%error,and allowed to recover the superlattice parameters.The retrieved intrinsic parameters of the samples aligned with XRD data and growth parameters.The proposed method also accurately predicted the escape of the second energy level for quantum well thicknesses less than 5 nm,as was observed in photoreflectance experiments.The new designs of THz light-emitting devices operating at room temperature were suggested by the developed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.62022089,12174439,11874405,52272135,62274010,61971035)the National Key Research and Development Program of China(Grant Nos.2019YFA0308000,2021YFA1401300,2021YFA1401800,2018YFA0704200,2021YFA1400100,2020YFA0308800)+2 种基金Chongqing Outstanding Youth Fund(Grant No.2021ZX0400005)Beijing Institute of Technology Science and Technology Innovation Program Innovative Talent Science and Technology Funding SpecialProgram(No.2022CX01022)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB33000000)。
文摘Moiré superlattices are formed when overlaying two materials with a slight mismatch in twist angle or lattice constant. They provide a novel platform for the study of strong electronic correlations and non-trivial band topology, where emergent phenomena such as correlated insulating states, unconventional superconductivity, and quantum anomalous Hall effect are discovered. In this review, we focus on the semiconducting transition metal dichalcogenides(TMDs) based moiré systems that host intriguing flat-band physics. We first review the exfoliation methods of two-dimensional materials and the fabrication technique of their moiré structures. Secondly, we overview the progress of the optically excited moiré excitons, which render the main discovery in the early experiments on TMD moiré systems. We then introduce the formation mechanism of flat bands and their potential in the quantum simulation of the Hubbard model with tunable doping, degeneracies, and correlation strength. Finally, we briefly discuss the challenges and future perspectives of this field.
文摘Anderson localization of phonons is a kind of phonon wave effect,which has been proved to occur in many structures with disorders.In this work,we introduced aperiodicity to boron nitride/carbon nanotube superlattices(BN/C NT SLs),and used molecular dynamics to calculate the thermal conductivity and the phonon transmission spectrum of the models.The existence of phonon Anderson localization was proved in this quasi one-dimensional structure by analyzing the phonon transmission spectra.Moreover,we introduced interfacial mixing to the aperiodic BN/C NT SLs and found that the coexistence of the two disorder entities(aperiodicity and interfacial mixing)can further decrease the thermal conductivity.In addition,we also showed that anharmonicity can destroy phonon localization at high temperatures.This work provides a reference for designing thermoelectric materials with low thermal conductivity by taking advantage of phonon localization.
基金the National Key Technologies R&D Program of China(Grant Nos.2019YFA0705203 and 2018YFA0209104)Major Program of the National Natural Science Foundation of China(Grant No.61790581)Aeronautical Science Foundation of China(Grant No.20182436004).
文摘High performance short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices on GaSb substrate have been demonstrated.At 300 K,the device exhibits a 50%cut-off wavelength of~2.1μm as predicted from the band structure calculation;the device responsivity peaks at 0.85 A/W,corresponding to a quantum efficiency(QE)of 56%for 2.0μm-thick absorption region.The dark current density of 1.03×10^(-3)A/cm^(2)is obtained under 50 mV applied bias.The device exhibits a saturated dark current shot noise limited specific detectivity(D*)of 3.29×1010cm·Hz^(1/2)/W(at a peak responsivity of 2.0μm)under-50 mV applied bias.
基金Project supported by the National Key Research and Development Project of China (Grant No. 2018YFB2200500)the National Natural Science Foundation of China (Grant Nos. 61790583, 61835011, 62174158 and 61991431)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021107)the Key Program of the Chinese Academy of Sciences (Grant No. XDB43000000)。
文摘We investigate a strain compensation method for the growth of complex interband cascade laser structures. For thick In As/Al Sb superlattice clad layers, the sublayer thicknesses were adjusted so that the tensile strain energy in the In As sublayer was equal to the compressive strain energy in the Al Sb sublayer. For the four-constituent active region, as the compressive strain in the Ga0.65In0.35Sb alloy layer was large, a tensile strain was incorporated in the chirped In As/Al Sb superlattice region for strain compensation to the Ga0.65In0.35Sb alloy. A laser structure of thickness 6 μm was grown on the Ga Sb substrate by molecular beam epitaxy. The wafer exhibited good surface morphology and high crystalline quality.
文摘本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为中波1:6 ML InAs/7 ML GaSb和中波2:9 ML InAs/7 ML GaSb。焦平面阵列像元中心距为12μm。在80 K时测试,器件双波段的工作谱段为中波1:3~4μm,中波2:3.8~5.2μm。中波1器件平均峰值探测率达到6.32×10^(11) cm·Hz^(1/2)W^(-1),中波2器件平均峰值探测率达到2.84×10^(11) cm·Hz^(1/2)W^(-1)。红外焦平面偏压调节成像测试得到清晰的双波段成像。本文是国内首次报道1280×1024规模InAs/GaSb II类超晶格中/中波双色红外焦平面探测器。
基金supported by National Natural Science Foundation of China (52275551)Shanxi Scholarship Council of China (2021-117)。
文摘One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,61974152,62104237,62004205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202057)+1 种基金Shanghai Science and Technology Committee Rising-Star Program(20QA1410500)Shanghai Sail Plans(21YF1455000)。
文摘In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.