Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels h...Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts.展开更多
Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in mo...Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress.展开更多
Objective: Application of magnetic nanoparticles as gene carrier in gene therapy has developed quickly. This study was designed to investigate the preparation of superparamagnetic dextran-coated iron oxide nanoparticl...Objective: Application of magnetic nanoparticles as gene carrier in gene therapy has developed quickly. This study was designed to investigate the preparation of superparamagnetic dextran-coated iron oxide nanoparticles (SDION) and the feasibility of SDION used as a novel gene carrier for plasmid DNA in vitro. Methods: SDION were prepared by chemical coprecipitation and separated by gel filtration on Sephacryl S-300HR, characterized by TEM, laser scattering system and Vibrating Sample Magnetometer Signal Processor. The green fluorescent protein (pGFP-C2) plasmid DNA was used as target gene. SDION-pGFP-C2 conjugate compounds were produced by means of oxidoreduction reaction. The connection ratio of SDION and pGFP-C2 DNA was analyzed and evaluated by agarose electrophoresis and the concentration of pGFP-C2 in supernatant was measured. Using liposome as control, the transfection efficiency of SDION and liposome was respectively evaluated under fluorescence microscope in vitro. Results: The diameter of SDION ranges from 3 nm to 8 nm, the effective diameter was 59.2 nm and the saturation magnetization was 0.23 emu/g. After SDION were reasonably oxidized, SDION could connect with pGFP-C2 to a high degree. The transfection efficiency of SDION as gene carrier was higher than that of liposome. Conclusion: The successes in connecting SDION with pGFP-C2 plasmid by means of oxidoreduction reaction and in transferring pGFP-C2 gene into human bladder cancer BIU-87 cells in vitro provided the experimental evidence for the feasibility of SDION used as a novel gene carrier.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
The study focused on the effect of several typical competing solutes on removal of arsenic with Fe2O3 and Al2O3. The test results indicate that chloride, nitrate and sulfate did not have detectable effects, and that s...The study focused on the effect of several typical competing solutes on removal of arsenic with Fe2O3 and Al2O3. The test results indicate that chloride, nitrate and sulfate did not have detectable effects, and that selenium(Ⅳ) (Se(Ⅳ)) and vanadium(Ⅴ) (V(Ⅴ)) showed slight effects on the adsorption of As(Ⅴ) with Fe2O3. The results also showed that adsorption of As(Ⅴ) on A12O3 was not affected by chloride and nitrate anions, but slightly by Se(Ⅳ) and V(Ⅴ) ions. Unlike the adsorption of As(Ⅴ) with Fe2O3, that with Fe2O3 was affected by the presence of sulfate in water solutions. Both phosphate and silica have significant adverse effects on the adsorption of As(Ⅴ) adsorption with Fe2O3 and Al2O3. Compared to the other tested anions, phosphate anion was found to be the most prominent solute affecting the As(Ⅴ) adsorption with Fe2O3 and Al2O3. In general, Fe2O3 has a better performance than Al2O3 in removal of As(Ⅴ) within a water environment where multi competing solutes are present.展开更多
Experiments on the effects of nitric oxide (NO) and iron on the growth of marine microalgae Skeletonema costatum were conducted. The results are as follows: exogenous NO could increase the growth rate of marine alg...Experiments on the effects of nitric oxide (NO) and iron on the growth of marine microalgae Skeletonema costatum were conducted. The results are as follows: exogenous NO could increase the growth rate of marine algae and raise the biomass remarkably under iron-deficient conditions. But it was a complicated process that the phytoplankton growth was influenced by NO and iron, which was controlled by the NO concentration, the nutrition level of the culture medium and the iron concentration, etc. Meanwhile, the iron concentration in the medium also has a direct influence on the growth and NO release capacity of the algae. Therefore, the effects of NO and iron on the growth of marine phytoplankton were mutual.展开更多
The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and i...The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment.展开更多
Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program redu...Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.展开更多
Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-ba...Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-based composite is proposed by using ceramsite containing iron oxide as EM wave absorbing functional aggregate. The ceramsite was synthesized by adding 10 wt% Fe3O4 into clay and sintering at 1 200 ℃, which shows obvious dielectric and magnetic loss properties for electromagnetic wave. The maximum reflection loss(RL) of the concrete specimens prepared with the ceramsite is between-10.2--10.7 dB(corresponding to absorption greater than 90% EM energy) in the bandwidth of 8-18 GHz. In addition, the compressive strength at 28 days age of the concrete is 46 MPa, showing the potentiality of being used as structural components in buildings.展开更多
Reducing the chloride content in regenerated iron oxides (RIO) from steel-pickling acid waste economically treated by Ruthner process is the most critical issue for the development of RIO as a useful raw material reso...Reducing the chloride content in regenerated iron oxides (RIO) from steel-pickling acid waste economically treated by Ruthner process is the most critical issue for the development of RIO as a useful raw material resource. In this paper, the results of a new method for characterization and modification of RIO produced in Mobarakeh Steel Complex were reported.展开更多
Staged reduction kinetics and characteristics of iron oxide direct reduction by carbon were studied in this work. The characteristics were investigated by simultaneous thermogravimetric analysis, X-ray diffraction(XR...Staged reduction kinetics and characteristics of iron oxide direct reduction by carbon were studied in this work. The characteristics were investigated by simultaneous thermogravimetric analysis, X-ray diffraction(XRD), and quadrupole mass spectrometry. The kinetics parameters of the reduction stages were obtained by isoconversional(model-free) methods. Three stages in the reduction are Fe2O3→Fe3O4, Fe3O4→Fe O, and Fe O→Fe, which start at 912 K, 1255 K, and 1397 K, respectively. The CO content in the evolved gas is lower than the CO2content in the Fe2O3→Fe3O4stage but is substantially greater than the CO2 contents in the Fe3O4→Fe O and Fe O→Fe stages, where gasification starts at approximately 1205 K. The activation energy(E) of the three stages are 126–309 k J/mol, 628 k J/mol, and 648 k J/mol, respectively. The restrictive step of the total reduction is Fe O→Fe. If the rate of the total reduction is to be improved, the rate of the Fe O→Fe reduction should be improved first. The activation energy of the first stage is much lower than those of the latter two stages because of carbon gasification. Carbon gasification and FexOy reduction by CO, which are the restrictive step in the last two stages, require further study.展开更多
Serpentinization produces molecular hydrogen(H2)that can support communities of microorganisms in hydrothermal fields;H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron,and conseque...Serpentinization produces molecular hydrogen(H2)that can support communities of microorganisms in hydrothermal fields;H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron,and consequently iron oxide(magnetite or hematite)forms.However,the mechanisms that control H2 and iron oxide formation are poorly constrained.In this study,we performed serpentinization experiments at 311℃ and 3.0 kbar on olivine(with <5% pyroxene),orthopyroxene,and peridotite.The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution.Olivine-derived serpentine had a significantly lower FeO content(6.57±1.30 wt.%)than primary olivine(9.86 wt.%),whereas orthopyroxene-derived serpentine had a comparable FeO content(6.26±0.58 wt.%)to that of primary orthopyroxene(6.24 wt.%).In experiments on peridotite,olivine was replaced by serpentine and iron oxide.However,pyroxene transformed solely to serpentine.After 20 days,olivine-derived serpentine had a FeO content of 8.18±1.56 wt.%,which was significantly higher than that of serpentine produced in olivine-only experiments.By contrast,serpentine after orthopyroxene had a slightly higher FeO content(6.53±1.01 wt.%)than primary orthopyroxene.Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral.After 120 days,the FeO content of olivine-derived serpentine decreased significantly(5.71±0.35 wt.%),whereas the FeO content of orthopyroxene-derived serpentine increased(6.85±0.63 wt.%)over the same period.This suggests that iron oxide preferentially formed after olivine serpentinization.Pyroxene in peridotite gained some Fe from olivine during the serpentinization process,which may have led to a decrease in iron oxide production.The correlation between FeO content and SiO_2 or AI_2 O_3 content in olivine-and orthopyroxene-derived serpentine indicates that aluminum and silica greatly control the production of iron oxide.Based on our results and data from natural serpentinites reported by other workers,we propose that aluminum may be more influential at the early stages of peridotite serpentinization when the production of iron oxide is very low,whereas silica may have a greater control on iron oxide production during the late stages instead.展开更多
The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additiv...The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additive at 850 degreesC. The effect of the catalyst was greater than that of the additive, it can be considered that catalyst promoted the formation of iron nucleus early on reduction processes of iron oxide/carbon composite pellets. In addition, both effects of catalyst and additive increased after added carbon powder into the pellets, but the extent of increase decreased when the carbon powder exceeded a suitable content (about 4%), this amount is less than that of carbon needed theoretically on the reduction from hematite to iron.展开更多
Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsi...Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data.展开更多
The effects of exogenous nitric oxide (NO) on plant growth, chlorophyll contents, photosynthetic and chlorophyll fluorescence parameters as well as lipid peroxidation and activities of antioxidant enzymes were inves...The effects of exogenous nitric oxide (NO) on plant growth, chlorophyll contents, photosynthetic and chlorophyll fluorescence parameters as well as lipid peroxidation and activities of antioxidant enzymes were investigated in Chinese cabbage plants exposed to iron (Fe) deficiency. Iron deficiency led to serious chlorosis in Chinese cabbage leaves, and resulted in significant decrease in plant growth, photosynthetic pigments, net photosynthetic rate, Fv/Fm, Ф ps Ⅱ and activities of antioxidant enzymes, and increase in lipid peroxidation. While treatment with SNP, a NO donor, it could revert the iron deficiency symptoms, increased photosynthetic rate as well as activities of antioxidant enzymes, and protected membrane from lipid peroxidation, as a result, the growth inhibition of Chinese cabbage by Fe deficiency was alleviated.展开更多
Clay samples containing 8.15% iron oxides and 27.49% alumina were leached in oxalic acid. Leaching experiments were per-formed in aqueous solutions of oxalic acid of 0.2-2 mol/L at 40-80 C for up to 90 min. The mixed ...Clay samples containing 8.15% iron oxides and 27.49% alumina were leached in oxalic acid. Leaching experiments were per-formed in aqueous solutions of oxalic acid of 0.2-2 mol/L at 40-80 C for up to 90 min. The mixed kinetic mechanism, i.e., t/τ=[(1 2X/3) (1 X)2/3 ]+b[ 1 (1 X)1/3], seemed to be the most appropriate one to fit the kinetic data of leaching iron oxides contained in clay in the aqueous oxalic acid solutions. The Arrhenius activation energy for leaching in the 1.8 mol/L oxalic acid was found to be 41.035 kJ/mol.展开更多
Five types of superparamagnetic iron oxide (SPIO),i.e. Ferumoxides (Feridex? Ⅳ, Berlex Laboratories),Fe r u c a r b o t ra n ( Re s ov i s t?, B aye r H e a l t h c a re ) ,Ferumoxtran-10 (AMI-227 or Code-72...Five types of superparamagnetic iron oxide (SPIO),i.e. Ferumoxides (Feridex? Ⅳ, Berlex Laboratories),Fe r u c a r b o t ra n ( Re s ov i s t?, B aye r H e a l t h c a re ) ,Ferumoxtran-10 (AMI-227 or Code-7227, Combidex?, AMAG Pharma; Sinerem?, Guerbet), NC100150(Clariscan?, Nycomed,) and (VSOP C184, Ferropharm)have been designed and clinically tested as magneticresonance contrast agents. However, until nowResovist? is current available in only a few countries.The other four agents have been stopped for furtherdevelopment or withdrawn from the market. AnotherSPIO agent Ferumoxytol (Feraheme) is approved forthe treatment of iron deficiency in adult chronic kidneydisease patients. Ferumoxytol is comprised of ironoxide particles surrounded by a carbohydrate coat, andit is being explored as a potential imaging approach forevaluating lymph nodes and certain liver tumors.展开更多
Polymer-supported hydrous iron oxides(HFOs) are promising for heavy metals removal from aqueous systems.The ubiquitous inorganic ligands, e.g., sulfate, are expected to exert considerable impacts on pollutants removal...Polymer-supported hydrous iron oxides(HFOs) are promising for heavy metals removal from aqueous systems.The ubiquitous inorganic ligands, e.g., sulfate, are expected to exert considerable impacts on pollutants removal by these hybrid sorbents. Herein, we obtained a hybrid sorbent HFO-PS by encapsulating nanosized HFO into macroporous polystyrene(PS) resin. Both batch and column sorption experiments of Cu(Ⅱ) by HFO-PS were carried out in the presence of sulfate. Obviously, the presence of sulfate is favorable for Cu(Ⅱ) sorption onto HFO-PS.The performances of column Cu(Ⅱ) removal were fitted and predicted with Adams–Bohart, Clark, Thomas and BDST models. Thomas model is suggested best-fit to predict the breakthrough curves. Besides, a linear correlation is observed between breakthrough time and column length based on BDST model, which might be useful for predicting the breakthrough time for Cu(Ⅱ) removal by HFO-PS.展开更多
The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. Th...The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carder could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carders were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carrier: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction condition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.展开更多
The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques.XRD characterization showed that CaO was highly dispersed after the calcination of sorb...The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques.XRD characterization showed that CaO was highly dispersed after the calcination of sorbents.Calcium sulfate formed in the desulfurization was decomposed and regenerated to CaO by reacting with CO before the next sulfidation process.Calcium participated in every sulfidation/regeneration cycle and contributed to the enhancement of sulfur capacity.The TPR results showed that the reduction temperature of the sorbent increased with the increase of the content of calcium.Calcium played a role of retarding reduction.Therefore,the addition of calcium oxide additive will benefit the utilization of iron oxide sorbent in strongly reducing atmospheres.展开更多
基金the financial support by the National Natural Science Foundation of China(NSFC,grant nos.21905288 and 51904288)Zhejiang Provincial Natural Science Foundation(LZ21B030001)+3 种基金K.C.Wong Education Foundation(GJTD-2019-13)Ningbo major special projects of the Plan“Science and Technology Innovation 2025”(grant nos.2018B10056 and 2019B10046)Ningbo 3315 ProgramYongjiang Talent Introduction Program(no.2021A-115-G)
文摘Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts.
基金Open Project of Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake,Grant Number HZHLAB2201.
文摘Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress.
基金This project was supported by a grant from the National Natural Science Foundation of China (No. 30271300).
文摘Objective: Application of magnetic nanoparticles as gene carrier in gene therapy has developed quickly. This study was designed to investigate the preparation of superparamagnetic dextran-coated iron oxide nanoparticles (SDION) and the feasibility of SDION used as a novel gene carrier for plasmid DNA in vitro. Methods: SDION were prepared by chemical coprecipitation and separated by gel filtration on Sephacryl S-300HR, characterized by TEM, laser scattering system and Vibrating Sample Magnetometer Signal Processor. The green fluorescent protein (pGFP-C2) plasmid DNA was used as target gene. SDION-pGFP-C2 conjugate compounds were produced by means of oxidoreduction reaction. The connection ratio of SDION and pGFP-C2 DNA was analyzed and evaluated by agarose electrophoresis and the concentration of pGFP-C2 in supernatant was measured. Using liposome as control, the transfection efficiency of SDION and liposome was respectively evaluated under fluorescence microscope in vitro. Results: The diameter of SDION ranges from 3 nm to 8 nm, the effective diameter was 59.2 nm and the saturation magnetization was 0.23 emu/g. After SDION were reasonably oxidized, SDION could connect with pGFP-C2 to a high degree. The transfection efficiency of SDION as gene carrier was higher than that of liposome. Conclusion: The successes in connecting SDION with pGFP-C2 plasmid by means of oxidoreduction reaction and in transferring pGFP-C2 gene into human bladder cancer BIU-87 cells in vitro provided the experimental evidence for the feasibility of SDION used as a novel gene carrier.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
文摘The study focused on the effect of several typical competing solutes on removal of arsenic with Fe2O3 and Al2O3. The test results indicate that chloride, nitrate and sulfate did not have detectable effects, and that selenium(Ⅳ) (Se(Ⅳ)) and vanadium(Ⅴ) (V(Ⅴ)) showed slight effects on the adsorption of As(Ⅴ) with Fe2O3. The results also showed that adsorption of As(Ⅴ) on A12O3 was not affected by chloride and nitrate anions, but slightly by Se(Ⅳ) and V(Ⅴ) ions. Unlike the adsorption of As(Ⅴ) with Fe2O3, that with Fe2O3 was affected by the presence of sulfate in water solutions. Both phosphate and silica have significant adverse effects on the adsorption of As(Ⅴ) adsorption with Fe2O3 and Al2O3. Compared to the other tested anions, phosphate anion was found to be the most prominent solute affecting the As(Ⅴ) adsorption with Fe2O3 and Al2O3. In general, Fe2O3 has a better performance than Al2O3 in removal of As(Ⅴ) within a water environment where multi competing solutes are present.
基金The authors thank Zhu Mingyuan for critically reading the manuscript.This study was supported by the National Natural Science Foundation of China under contract Nos 40076020 and 40376022the National“973”Project of China under coutract No.2001CB409700the Doctoral Program of Higher Education of China under contract No.20030423007.
文摘Experiments on the effects of nitric oxide (NO) and iron on the growth of marine microalgae Skeletonema costatum were conducted. The results are as follows: exogenous NO could increase the growth rate of marine algae and raise the biomass remarkably under iron-deficient conditions. But it was a complicated process that the phytoplankton growth was influenced by NO and iron, which was controlled by the NO concentration, the nutrition level of the culture medium and the iron concentration, etc. Meanwhile, the iron concentration in the medium also has a direct influence on the growth and NO release capacity of the algae. Therefore, the effects of NO and iron on the growth of marine phytoplankton were mutual.
基金the Hunan Provincial Natural Science Foundation of China (No. 07 JJ4003)
文摘The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment.
基金financially supported by the National Natural Science Foundation of China (Nos. 51104014 and 51134008)
文摘Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.
基金Funded by the National Natural Science Foundation of China(Nos.51372183,50902106,51461135005)Program for New Century Excellent Talents in University(No.NCET-10-0660)
文摘Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-based composite is proposed by using ceramsite containing iron oxide as EM wave absorbing functional aggregate. The ceramsite was synthesized by adding 10 wt% Fe3O4 into clay and sintering at 1 200 ℃, which shows obvious dielectric and magnetic loss properties for electromagnetic wave. The maximum reflection loss(RL) of the concrete specimens prepared with the ceramsite is between-10.2--10.7 dB(corresponding to absorption greater than 90% EM energy) in the bandwidth of 8-18 GHz. In addition, the compressive strength at 28 days age of the concrete is 46 MPa, showing the potentiality of being used as structural components in buildings.
文摘Reducing the chloride content in regenerated iron oxides (RIO) from steel-pickling acid waste economically treated by Ruthner process is the most critical issue for the development of RIO as a useful raw material resource. In this paper, the results of a new method for characterization and modification of RIO produced in Mobarakeh Steel Complex were reported.
基金financially supported by the State Key Program of National Natural Science of China(No.51234008)
文摘Staged reduction kinetics and characteristics of iron oxide direct reduction by carbon were studied in this work. The characteristics were investigated by simultaneous thermogravimetric analysis, X-ray diffraction(XRD), and quadrupole mass spectrometry. The kinetics parameters of the reduction stages were obtained by isoconversional(model-free) methods. Three stages in the reduction are Fe2O3→Fe3O4, Fe3O4→Fe O, and Fe O→Fe, which start at 912 K, 1255 K, and 1397 K, respectively. The CO content in the evolved gas is lower than the CO2content in the Fe2O3→Fe3O4stage but is substantially greater than the CO2 contents in the Fe3O4→Fe O and Fe O→Fe stages, where gasification starts at approximately 1205 K. The activation energy(E) of the three stages are 126–309 k J/mol, 628 k J/mol, and 648 k J/mol, respectively. The restrictive step of the total reduction is Fe O→Fe. If the rate of the total reduction is to be improved, the rate of the Fe O→Fe reduction should be improved first. The activation energy of the first stage is much lower than those of the latter two stages because of carbon gasification. Carbon gasification and FexOy reduction by CO, which are the restrictive step in the last two stages, require further study.
基金financially supported by the National Natural Science Foundation of China(Nos.41603060,91328204)Postdoctoral Science Foundation of China(Nos.2015M570735,2016T90805)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB06030100)the scientific research fund of the Second Institute of Oceanography,SOA(JG1405)
文摘Serpentinization produces molecular hydrogen(H2)that can support communities of microorganisms in hydrothermal fields;H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron,and consequently iron oxide(magnetite or hematite)forms.However,the mechanisms that control H2 and iron oxide formation are poorly constrained.In this study,we performed serpentinization experiments at 311℃ and 3.0 kbar on olivine(with <5% pyroxene),orthopyroxene,and peridotite.The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution.Olivine-derived serpentine had a significantly lower FeO content(6.57±1.30 wt.%)than primary olivine(9.86 wt.%),whereas orthopyroxene-derived serpentine had a comparable FeO content(6.26±0.58 wt.%)to that of primary orthopyroxene(6.24 wt.%).In experiments on peridotite,olivine was replaced by serpentine and iron oxide.However,pyroxene transformed solely to serpentine.After 20 days,olivine-derived serpentine had a FeO content of 8.18±1.56 wt.%,which was significantly higher than that of serpentine produced in olivine-only experiments.By contrast,serpentine after orthopyroxene had a slightly higher FeO content(6.53±1.01 wt.%)than primary orthopyroxene.Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral.After 120 days,the FeO content of olivine-derived serpentine decreased significantly(5.71±0.35 wt.%),whereas the FeO content of orthopyroxene-derived serpentine increased(6.85±0.63 wt.%)over the same period.This suggests that iron oxide preferentially formed after olivine serpentinization.Pyroxene in peridotite gained some Fe from olivine during the serpentinization process,which may have led to a decrease in iron oxide production.The correlation between FeO content and SiO_2 or AI_2 O_3 content in olivine-and orthopyroxene-derived serpentine indicates that aluminum and silica greatly control the production of iron oxide.Based on our results and data from natural serpentinites reported by other workers,we propose that aluminum may be more influential at the early stages of peridotite serpentinization when the production of iron oxide is very low,whereas silica may have a greater control on iron oxide production during the late stages instead.
基金the National Natural Science Foundation of China, Contract No. 59774022.]
文摘The catalyst containing 0.69% (mass fraction) of Li+, Na+, or Ca2+ were synthesized, and the catalytic effect on the reduction of iron oxide/carbon composite pellets were investigated by comparing with that of additive at 850 degreesC. The effect of the catalyst was greater than that of the additive, it can be considered that catalyst promoted the formation of iron nucleus early on reduction processes of iron oxide/carbon composite pellets. In addition, both effects of catalyst and additive increased after added carbon powder into the pellets, but the extent of increase decreased when the carbon powder exceeded a suitable content (about 4%), this amount is less than that of carbon needed theoretically on the reduction from hematite to iron.
基金Supported by the National Natural Science Foundation of China (20736004)the State Key Development Program for Basic Research of China (2007CB613502)
文摘Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data.
文摘The effects of exogenous nitric oxide (NO) on plant growth, chlorophyll contents, photosynthetic and chlorophyll fluorescence parameters as well as lipid peroxidation and activities of antioxidant enzymes were investigated in Chinese cabbage plants exposed to iron (Fe) deficiency. Iron deficiency led to serious chlorosis in Chinese cabbage leaves, and resulted in significant decrease in plant growth, photosynthetic pigments, net photosynthetic rate, Fv/Fm, Ф ps Ⅱ and activities of antioxidant enzymes, and increase in lipid peroxidation. While treatment with SNP, a NO donor, it could revert the iron deficiency symptoms, increased photosynthetic rate as well as activities of antioxidant enzymes, and protected membrane from lipid peroxidation, as a result, the growth inhibition of Chinese cabbage by Fe deficiency was alleviated.
文摘Clay samples containing 8.15% iron oxides and 27.49% alumina were leached in oxalic acid. Leaching experiments were per-formed in aqueous solutions of oxalic acid of 0.2-2 mol/L at 40-80 C for up to 90 min. The mixed kinetic mechanism, i.e., t/τ=[(1 2X/3) (1 X)2/3 ]+b[ 1 (1 X)1/3], seemed to be the most appropriate one to fit the kinetic data of leaching iron oxides contained in clay in the aqueous oxalic acid solutions. The Arrhenius activation energy for leaching in the 1.8 mol/L oxalic acid was found to be 41.035 kJ/mol.
文摘Five types of superparamagnetic iron oxide (SPIO),i.e. Ferumoxides (Feridex? Ⅳ, Berlex Laboratories),Fe r u c a r b o t ra n ( Re s ov i s t?, B aye r H e a l t h c a re ) ,Ferumoxtran-10 (AMI-227 or Code-7227, Combidex?, AMAG Pharma; Sinerem?, Guerbet), NC100150(Clariscan?, Nycomed,) and (VSOP C184, Ferropharm)have been designed and clinically tested as magneticresonance contrast agents. However, until nowResovist? is current available in only a few countries.The other four agents have been stopped for furtherdevelopment or withdrawn from the market. AnotherSPIO agent Ferumoxytol (Feraheme) is approved forthe treatment of iron deficiency in adult chronic kidneydisease patients. Ferumoxytol is comprised of ironoxide particles surrounded by a carbohydrate coat, andit is being explored as a potential imaging approach forevaluating lymph nodes and certain liver tumors.
基金Supported by the National Natural Science Foundation of China(21607080)the Natural Science Foundation of Jiangsu Province(BK20160946)Jiangsu Higher Education Institution NSF(16KJB610011)
文摘Polymer-supported hydrous iron oxides(HFOs) are promising for heavy metals removal from aqueous systems.The ubiquitous inorganic ligands, e.g., sulfate, are expected to exert considerable impacts on pollutants removal by these hybrid sorbents. Herein, we obtained a hybrid sorbent HFO-PS by encapsulating nanosized HFO into macroporous polystyrene(PS) resin. Both batch and column sorption experiments of Cu(Ⅱ) by HFO-PS were carried out in the presence of sulfate. Obviously, the presence of sulfate is favorable for Cu(Ⅱ) sorption onto HFO-PS.The performances of column Cu(Ⅱ) removal were fitted and predicted with Adams–Bohart, Clark, Thomas and BDST models. Thomas model is suggested best-fit to predict the breakthrough curves. Besides, a linear correlation is observed between breakthrough time and column length based on BDST model, which might be useful for predicting the breakthrough time for Cu(Ⅱ) removal by HFO-PS.
基金the National Natural Science Foundation of China (50574046)National Natural Science Foundation of Major Research Projects (90610035)+1 种基金Natural Science Foundation of Yunnan Province (2004E0058Q)High School Doctoral Subject Special Science and Research Foundation of Ministry of Education (20040674005)
文摘The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carder could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carders were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carrier: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction condition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.
基金the National Key Fundamental Research Project of the Ministry of Science and Technology(973 2005CB221203)
文摘The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques.XRD characterization showed that CaO was highly dispersed after the calcination of sorbents.Calcium sulfate formed in the desulfurization was decomposed and regenerated to CaO by reacting with CO before the next sulfidation process.Calcium participated in every sulfidation/regeneration cycle and contributed to the enhancement of sulfur capacity.The TPR results showed that the reduction temperature of the sorbent increased with the increase of the content of calcium.Calcium played a role of retarding reduction.Therefore,the addition of calcium oxide additive will benefit the utilization of iron oxide sorbent in strongly reducing atmospheres.