Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is prop...Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is proposed. Firstly, we use an improved superpixels clustering method to decompose the given image. Then, the disparity of each superpixel is computed by a modified stereo correspondence algorithm. Finally, a new measure which combines stereo disparity with color contrast and spatial coherence is defined to evaluate the saliency of each superpixel. From the experiments we can see that regions with high disparity can get higher saliency value, and the saliency maps have the same resolution with the source images, objects in the map have clear boundaries. Due to the use of superpixel and stereo disparity information, the proposed method is computationally efficient and outperforms some state-of-the-art color- based saliency detection methods.展开更多
This paper proposes a novel object detection method in which a set of local features inside the superpixels are extracted from the image under analysis acquired by a 3D visual sensor. To increase the segmentation accu...This paper proposes a novel object detection method in which a set of local features inside the superpixels are extracted from the image under analysis acquired by a 3D visual sensor. To increase the segmentation accuracy, the proposed method firstly performs the segmentation of the image, under analysis, using the Simple Linear Iterative Clustering (SLIC) superpixels method. Next the key points inside each superpixel are estimated using the Speed-Up Robust Feature (SURF). These key points are then used to carry out the matching task for every detected keypoints of a scene inside the estimated superpixels. In addition, a probability map is introduced to describe the accuracy of the object detection results. Experimental results show that the proposed approach provides fairly good object detection and confirms the superior performance of proposed scene compared with other recently proposed methods such as the scheme proposed by Mae et al.展开更多
Photoacoustic(PA) imaging has drawn tremendous research interest for various applications in biomedicine and experienced exponential growth over the past decade. Since the scattering effect of biological tissue on ult...Photoacoustic(PA) imaging has drawn tremendous research interest for various applications in biomedicine and experienced exponential growth over the past decade. Since the scattering effect of biological tissue on ultrasound is two-to three-orders magnitude weaker than that of light, photoacoustic imaging can effectively improve the imaging depth.However, as the depth of imaging further increases, the incident light is seriously affected by scattering that the generated photoacoustic signal is very weak and the signal-to-noise ratio(SNR) is quite low. Low SNR signals can reduce imaging quality and even cause imaging failure. In this paper, we proposed a new wavefront shaping and imaging method of low SNR photoacoustic signal using digital micromirror device(DMD) based superpixel method. We combined the superpixel method with DMD to modulate the phase and amplitude of the incident light, and the genetic algorithm(GA) was used as the wavefront shaping algorithm. The enhancement of the photoacoustic signal reached 10.46. Then we performed scanning imaging by moving the absorber with the translation stage. A clear image with contrast of 8.57 was obtained while imaging with original photoacoustic signals could not be achieved. The proposed method opens new perspectives for imaging with weak photoacoustic signals.展开更多
The region completeness of object detection is very crucial to video surveillance, such as the pedestrian and vehicle identifications. However, many conventional object detection approaches cannot guarantee the object...The region completeness of object detection is very crucial to video surveillance, such as the pedestrian and vehicle identifications. However, many conventional object detection approaches cannot guarantee the object region completeness because the object detection can be influenced by the illumination variations and clustering backgrounds. In order to overcome this problem, we propose the iterative superpixels grouping (ISPG) method to extract the precise object boundary and generate the object region with high completeness after the object detection. First, by extending the superpixel segmentation method, the proposed ISPG method can improve the inaccurate segmentation problem and guarantee the region completeness on the object regions. Second, the multi- resolution superpixel-based region completeness enhancement method is proposed to extract the object region with high precision and completeness. The simulation results show that the proposed method outperforms the conventional object detection methods in terms of object completeness evaluation.展开更多
The superpixel segmentation has been widely applied in many computer vision and image process applications.In recent years,amount of superpixel segmentation algorithms have been proposed.However,most of the current al...The superpixel segmentation has been widely applied in many computer vision and image process applications.In recent years,amount of superpixel segmentation algorithms have been proposed.However,most of the current algorithms are designed for natural images with little noise corrupted.In order to apply the superpixel algorithms to hyperspectral images which are always seriously polluted by noise,we propose a noiseresistant superpixel segmentation(NRSS)algorithm in this paper.In the proposed NRSS,the spectral signatures are first transformed into frequency domain to enhance the noise robustness;then the two widely spectral similarity measures-spectral angle mapper(SAM)and spectral information divergence(SID)are combined to enhance the discriminability of the spectral similarity;finally,the superpixels are generated with the proposed frequency-based spectral similarity.Both qualitative and quantitative experimental results demonstrate the effectiveness of the proposed superpixel segmentation algorithm when dealing with hyperspectral images with various noise levels.Moreover,the proposed NRSS is compared with the most widely used superpixel segmentation algorithm-simple linear iterative clustering(SLIC),where the comparison results prove the superiority of the proposed superpixel segmentation algorithm.展开更多
Superpixel segmentation is the oversegmentation of an image into a set of homogeneous regions. Superpixel has many specific properties and has been commonly used as supporting regions for primitives to reduce computat...Superpixel segmentation is the oversegmentation of an image into a set of homogeneous regions. Superpixel has many specific properties and has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. One property of superpixels is compactness, which is preferred in some applications. In this paper, we give an review on image superpixel segmentation algorithms proposed in recent years. Superpixel segmentation approaches are classified based on the compactness constraint and their main idea are introduced. We also compare these algorithms in visual and evaluate them with five common measurements.展开更多
Superpixels generation is becoming increasingly popular as a preprocessing in many computer vision applications. A superpixel is an image patch which has uniform pixels intensity and is aligned with intensity edges. S...Superpixels generation is becoming increasingly popular as a preprocessing in many computer vision applications. A superpixel is an image patch which has uniform pixels intensity and is aligned with intensity edges. Superpixels provide a convenient primitive from which local image features can be computed. So far, there are many methods to generate superpixels. Several main superpixels generation algorithms are summarized in this paper and the advantages and disadvantages of them are analyzed simply. In the end, some applications of superpixels are listed.展开更多
针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从...针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从而确定所需分割的超像素个数。其次,利用皮尔森相关系数作为相似性度量函数。最后,通过纹理特征对类内异常点进行滤除,确保种子点更新的准确性。实验结果表明,在超像素个数相同的情况下,基于皮尔森相关系数的自适应SLIC超像素图像分割算法相比主流超像素分割算法,可以获得更高的边缘命中率以及更低的欠分割率,性能优于LSC(Linear Spectral Clustering)、SLIC和SLIC0(Simple Linear Iterative Clustering Zero)算法。展开更多
高光谱图像可以获取波段连续的图谱合一的立体数据,其具有丰富的图谱信息,能区分不同物质的类别,被广泛应用于各种遥感勘测领域。但在实际中高光谱图像的标注需要耗费大量的人力、财力和时间,可用的标注样本数量较少,难以通过训练来获...高光谱图像可以获取波段连续的图谱合一的立体数据,其具有丰富的图谱信息,能区分不同物质的类别,被广泛应用于各种遥感勘测领域。但在实际中高光谱图像的标注需要耗费大量的人力、财力和时间,可用的标注样本数量较少,难以通过训练来获得准确的分类结果,所以针对于只有少量标记样本的高光谱图像分类是一个挑战。近年来,自监督学习(Self-supervised Learning,SSL)已成为一种有效的方法,可以减少高光谱图像分类对昂贵的数据标注的依赖。SSL方法通过学习在同一图像的不同视图之间产生的潜在特征,在自然图像分类中取得了较高的分类精度。为了探索SSL方法在高光谱图像分类中的潜力,一种Bootstrap Your Own Latent(BYOL)框架下的自监督高光谱图像分类方法(BSSL)被提出。该方法通过引用自监督的图像特征学习框架BYOL,可以不需要负样本对,利用空间光谱相似的同类样本对进行网络训练及参数微调,提取到更具判别性特征。具体来说,该方法主要包括四个部分:BYOL的预训练、超像素聚类、基于“相似对”的BYOL的再训练和最终分类。为了验证该方法的有效性,在三个公开数据集上进行测试,并与五种先进的无监督、自监督分类方法SuperPCA、S3PCA、ContrastNet、SSCL和N2SSL进行对比,在Indian Pines和Salinas数据集上,BSSL方法的总体分类精度(OA)、平均分类精度(AA)、Kappa系数、召回率(recall)和f1分数(f1-score)都取得了更优值。其中在Indian Pines数据集上,OA分别比SuperPCA,S3PCA,ContrastNet,SSCL和N2SSL提高了1.32%,1.05%,5.68%,3.12%和1.27%。而在University of Pavia数据集上,BSSL方法表现没有那么出色,但在综合分类性能上也表现最优。这表明BSSL方法更适用于地物区域面积较大且分布较集中的场景,因为这对于超像素聚类来说更友好。展开更多
针对经典图像去雾算法在边缘区域易产生光晕效应、天空等明亮区域还原失真、色调偏移等问题,提出一种基于天空检测和超像素分割的改进暗通道图像去雾新方法(Dark Channel Prior based on Sky Detection and Super Pixel,SSPDCP).首先对...针对经典图像去雾算法在边缘区域易产生光晕效应、天空等明亮区域还原失真、色调偏移等问题,提出一种基于天空检测和超像素分割的改进暗通道图像去雾新方法(Dark Channel Prior based on Sky Detection and Super Pixel,SSPDCP).首先对雾图采用HSV变换提取亮度分量进行自适应阈值分割;然后应用图像连通分析技术识别天空域;接着利用天空域估计大气光值,针对天空和非天空区域分别建立各自的透射率计算模型,并基于构建的超像素级透射率融合模型获得融合透射率图,以促进边界区域的平滑过渡,采用多尺度引导滤波精化透射率图;最后应用大气散射模型完成图像复原并进行亮度增强处理,实现无雾图像的自然恢复.该方法识别的天空区域较为连续完整,以超像素代替方形窗口可以有效克服局部块效应的影响,大气光值和透射率图估计更为客观准确.从主观定性和客观定量评价方面来看,该方法复原的图像具有整体误差小、信噪比优良、结构相似度高等优势.本文所提出的图像去雾新方法能有效抑制边缘区域的光晕效应,且复原的天空区域明亮自然,图像去雾质量相比现有方法有进一步提升.展开更多
基金supported by NSFC Joint Fund with Guangdong under Key Project(U1201258)National Natural Science foundation of China(61402261+3 种基金6130308861572286)the scientific research foundation of Shandong Province of Outstanding Young Scientist Award(BS2013DX048)Shandong Ji’nan Science and Technology Development Project(201202015)
文摘Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is proposed. Firstly, we use an improved superpixels clustering method to decompose the given image. Then, the disparity of each superpixel is computed by a modified stereo correspondence algorithm. Finally, a new measure which combines stereo disparity with color contrast and spatial coherence is defined to evaluate the saliency of each superpixel. From the experiments we can see that regions with high disparity can get higher saliency value, and the saliency maps have the same resolution with the source images, objects in the map have clear boundaries. Due to the use of superpixel and stereo disparity information, the proposed method is computationally efficient and outperforms some state-of-the-art color- based saliency detection methods.
文摘This paper proposes a novel object detection method in which a set of local features inside the superpixels are extracted from the image under analysis acquired by a 3D visual sensor. To increase the segmentation accuracy, the proposed method firstly performs the segmentation of the image, under analysis, using the Simple Linear Iterative Clustering (SLIC) superpixels method. Next the key points inside each superpixel are estimated using the Speed-Up Robust Feature (SURF). These key points are then used to carry out the matching task for every detected keypoints of a scene inside the estimated superpixels. In addition, a probability map is introduced to describe the accuracy of the object detection results. Experimental results show that the proposed approach provides fairly good object detection and confirms the superior performance of proposed scene compared with other recently proposed methods such as the scheme proposed by Mae et al.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB1104500)the Beijing Natural Science Foundation,China(Grant No.7182091)+1 种基金the National Natural Science Foundation of China(Grant No.21627813)the Research Projects on Biomedical Transformation of China–Japan Friendship Hospital(Grant No.PYBZ1801)。
文摘Photoacoustic(PA) imaging has drawn tremendous research interest for various applications in biomedicine and experienced exponential growth over the past decade. Since the scattering effect of biological tissue on ultrasound is two-to three-orders magnitude weaker than that of light, photoacoustic imaging can effectively improve the imaging depth.However, as the depth of imaging further increases, the incident light is seriously affected by scattering that the generated photoacoustic signal is very weak and the signal-to-noise ratio(SNR) is quite low. Low SNR signals can reduce imaging quality and even cause imaging failure. In this paper, we proposed a new wavefront shaping and imaging method of low SNR photoacoustic signal using digital micromirror device(DMD) based superpixel method. We combined the superpixel method with DMD to modulate the phase and amplitude of the incident light, and the genetic algorithm(GA) was used as the wavefront shaping algorithm. The enhancement of the photoacoustic signal reached 10.46. Then we performed scanning imaging by moving the absorber with the translation stage. A clear image with contrast of 8.57 was obtained while imaging with original photoacoustic signals could not be achieved. The proposed method opens new perspectives for imaging with weak photoacoustic signals.
基金supported in part by the“MOST”under Grant No.103-2221-E-216-012
文摘The region completeness of object detection is very crucial to video surveillance, such as the pedestrian and vehicle identifications. However, many conventional object detection approaches cannot guarantee the object region completeness because the object detection can be influenced by the illumination variations and clustering backgrounds. In order to overcome this problem, we propose the iterative superpixels grouping (ISPG) method to extract the precise object boundary and generate the object region with high completeness after the object detection. First, by extending the superpixel segmentation method, the proposed ISPG method can improve the inaccurate segmentation problem and guarantee the region completeness on the object regions. Second, the multi- resolution superpixel-based region completeness enhancement method is proposed to extract the object region with high precision and completeness. The simulation results show that the proposed method outperforms the conventional object detection methods in terms of object completeness evaluation.
基金This work was supported in part by the National Natural Science Foundation of China under Grant No.61801222 and No.61501522in part by the Project of Shandong Province Higher Educational Science and Technology Program under Grant No.KJ2018BAN047.
文摘The superpixel segmentation has been widely applied in many computer vision and image process applications.In recent years,amount of superpixel segmentation algorithms have been proposed.However,most of the current algorithms are designed for natural images with little noise corrupted.In order to apply the superpixel algorithms to hyperspectral images which are always seriously polluted by noise,we propose a noiseresistant superpixel segmentation(NRSS)algorithm in this paper.In the proposed NRSS,the spectral signatures are first transformed into frequency domain to enhance the noise robustness;then the two widely spectral similarity measures-spectral angle mapper(SAM)and spectral information divergence(SID)are combined to enhance the discriminability of the spectral similarity;finally,the superpixels are generated with the proposed frequency-based spectral similarity.Both qualitative and quantitative experimental results demonstrate the effectiveness of the proposed superpixel segmentation algorithm when dealing with hyperspectral images with various noise levels.Moreover,the proposed NRSS is compared with the most widely used superpixel segmentation algorithm-simple linear iterative clustering(SLIC),where the comparison results prove the superiority of the proposed superpixel segmentation algorithm.
基金Supported by the National Science Foundation of China(61373078,61572292)NSFC Joint Fund with Zhejiang Integration of Informatization and Industrialization under Key Project(U1609218)
文摘Superpixel segmentation is the oversegmentation of an image into a set of homogeneous regions. Superpixel has many specific properties and has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. One property of superpixels is compactness, which is preferred in some applications. In this paper, we give an review on image superpixel segmentation algorithms proposed in recent years. Superpixel segmentation approaches are classified based on the compactness constraint and their main idea are introduced. We also compare these algorithms in visual and evaluate them with five common measurements.
基金Supported by Independent Innovation Foundation of Shandong University,IIFSDU(No.2012TB013)Scientific Research Foundation of Shandong Province of Outstanding Young Scientist Award(No.BS2013DX041,No.BS2013DX048)+1 种基金Shandong Province Natural Fund(zr2011FM031)Ji'nan Science and Technology Development Project(No.201202015)
文摘Superpixels generation is becoming increasingly popular as a preprocessing in many computer vision applications. A superpixel is an image patch which has uniform pixels intensity and is aligned with intensity edges. Superpixels provide a convenient primitive from which local image features can be computed. So far, there are many methods to generate superpixels. Several main superpixels generation algorithms are summarized in this paper and the advantages and disadvantages of them are analyzed simply. In the end, some applications of superpixels are listed.
文摘针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从而确定所需分割的超像素个数。其次,利用皮尔森相关系数作为相似性度量函数。最后,通过纹理特征对类内异常点进行滤除,确保种子点更新的准确性。实验结果表明,在超像素个数相同的情况下,基于皮尔森相关系数的自适应SLIC超像素图像分割算法相比主流超像素分割算法,可以获得更高的边缘命中率以及更低的欠分割率,性能优于LSC(Linear Spectral Clustering)、SLIC和SLIC0(Simple Linear Iterative Clustering Zero)算法。
文摘高光谱图像可以获取波段连续的图谱合一的立体数据,其具有丰富的图谱信息,能区分不同物质的类别,被广泛应用于各种遥感勘测领域。但在实际中高光谱图像的标注需要耗费大量的人力、财力和时间,可用的标注样本数量较少,难以通过训练来获得准确的分类结果,所以针对于只有少量标记样本的高光谱图像分类是一个挑战。近年来,自监督学习(Self-supervised Learning,SSL)已成为一种有效的方法,可以减少高光谱图像分类对昂贵的数据标注的依赖。SSL方法通过学习在同一图像的不同视图之间产生的潜在特征,在自然图像分类中取得了较高的分类精度。为了探索SSL方法在高光谱图像分类中的潜力,一种Bootstrap Your Own Latent(BYOL)框架下的自监督高光谱图像分类方法(BSSL)被提出。该方法通过引用自监督的图像特征学习框架BYOL,可以不需要负样本对,利用空间光谱相似的同类样本对进行网络训练及参数微调,提取到更具判别性特征。具体来说,该方法主要包括四个部分:BYOL的预训练、超像素聚类、基于“相似对”的BYOL的再训练和最终分类。为了验证该方法的有效性,在三个公开数据集上进行测试,并与五种先进的无监督、自监督分类方法SuperPCA、S3PCA、ContrastNet、SSCL和N2SSL进行对比,在Indian Pines和Salinas数据集上,BSSL方法的总体分类精度(OA)、平均分类精度(AA)、Kappa系数、召回率(recall)和f1分数(f1-score)都取得了更优值。其中在Indian Pines数据集上,OA分别比SuperPCA,S3PCA,ContrastNet,SSCL和N2SSL提高了1.32%,1.05%,5.68%,3.12%和1.27%。而在University of Pavia数据集上,BSSL方法表现没有那么出色,但在综合分类性能上也表现最优。这表明BSSL方法更适用于地物区域面积较大且分布较集中的场景,因为这对于超像素聚类来说更友好。
文摘针对经典图像去雾算法在边缘区域易产生光晕效应、天空等明亮区域还原失真、色调偏移等问题,提出一种基于天空检测和超像素分割的改进暗通道图像去雾新方法(Dark Channel Prior based on Sky Detection and Super Pixel,SSPDCP).首先对雾图采用HSV变换提取亮度分量进行自适应阈值分割;然后应用图像连通分析技术识别天空域;接着利用天空域估计大气光值,针对天空和非天空区域分别建立各自的透射率计算模型,并基于构建的超像素级透射率融合模型获得融合透射率图,以促进边界区域的平滑过渡,采用多尺度引导滤波精化透射率图;最后应用大气散射模型完成图像复原并进行亮度增强处理,实现无雾图像的自然恢复.该方法识别的天空区域较为连续完整,以超像素代替方形窗口可以有效克服局部块效应的影响,大气光值和透射率图估计更为客观准确.从主观定性和客观定量评价方面来看,该方法复原的图像具有整体误差小、信噪比优良、结构相似度高等优势.本文所提出的图像去雾新方法能有效抑制边缘区域的光晕效应,且复原的天空区域明亮自然,图像去雾质量相比现有方法有进一步提升.