Some commercial cold working die steels C.,Cr15 and CrWMn with ultra fine grain size were chosen as tested materials to research the activation energy for superplastic flow at different temperatures and strain rates a...Some commercial cold working die steels C.,Cr15 and CrWMn with ultra fine grain size were chosen as tested materials to research the activation energy for superplastic flow at different temperatures and strain rates above critical temperature. Based on the Arrhenius equation, the activation energy for superplastic flow is evaluated. The activation energy at constant strain rate is estimated by the logσ, vs 1/T relationship. The results show that the ac tivation energy is usually small under the conditions of optimal flow. The characteristics of superplastic deformation of steels above the critical temperature were also analyzed.展开更多
文摘Some commercial cold working die steels C.,Cr15 and CrWMn with ultra fine grain size were chosen as tested materials to research the activation energy for superplastic flow at different temperatures and strain rates above critical temperature. Based on the Arrhenius equation, the activation energy for superplastic flow is evaluated. The activation energy at constant strain rate is estimated by the logσ, vs 1/T relationship. The results show that the ac tivation energy is usually small under the conditions of optimal flow. The characteristics of superplastic deformation of steels above the critical temperature were also analyzed.