Through an integrated study of Mesozoic and Palaeozoic petroleum geology insouthern China and a summing-up of the results of exploration, the authors tentatively put forward aset of methods of studying petroleum syste...Through an integrated study of Mesozoic and Palaeozoic petroleum geology insouthern China and a summing-up of the results of exploration, the authors tentatively put forward aset of methods of studying petroleum systems in modified residual basins or superposed basins. Itscore idea is to put emphasis on the study of the dynamic evolution of petroleum systems. Thetempo-spatial evolution, hydrocarbon-generating processes and hydrocarbon-generating intensities andamounts of resources in different geological stages of chief source rocks are mainly deducedbackward by 3-D basin modelling. The regularities of formation and destruction of oil and gasaccumulations are summarized by analyzing the fossil and existing oil and gas accumulations, thedirection of migration is studied by palaeo-structural analysis, and the dynamic evolution ofPalaeozoic and Mesozoic petroleum systems in southern China is studied according to stages of majortectonic movements. The authors suggest that the realistic exploration targets of Palaeozoic andMesozoic petroleum systems in southern China are secondary and hydrocarbon-regeneration petroleumsystems, while the existing primary petroleum systems are rare. They propose that the favourableareas for exploration of Palaeozoic and Mesozoic petroleum systems in southern China are the frontarea of the Daba Mountains and the steep anticlinal zone on the western side of the Shizhusynclinorium in northeastern Sichuan, the Funin-Yancheng-Hai'an-Xinghua-Baoying area in the northernJiangsu basin, the Qianjiang-Xiantao-Paizhou-Chacan 1 well area in the southern part of the Chenhuarea of the Jianghan basin, the South Poyang basin in Jiangxi and the North subbasin of the Chuxiongbasin. This view has been supported by the discovery of the Zhujiadun gas field in the Yanchengsubbasin of the northern Jiangsu basin and the Kaixiantaixi oil-bearing structure in the southernpart of the Chenhu area of the Jianghan basin.展开更多
The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and ep...The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and epiclastic rocks. The volcanic rocks, dating from 110 Ma to 130 Ma, are of geochemically active continental margin type. Fast northward migration of the SB block occurred during the major episodes of the volcanism inferred from their paleomagnetic information. The upper one of the basin fill is dominated by non-marine sag-style sedimentary sequence of silicidastics and minor carbonates. The basin center shifted westwards from the early to late Cretaceous revealed by the GGT seismic velocity structure suggesting dynamic change in the basin evolution. Thus, a superposed basin model is proposed. Evolution of the SB involves three periods including (1) Alptian and pre- Aptian: a retroarc basin and range system of Andes type related to Mongolia-Okhotsk collisional belt (MOCB); (2) Albian to Companian: a sag-like strike-slip basin under transtension related to oblique subduction of the Pacific plate along the eastern margin of the Eurasian plate; (3) since Maastrichtian: a tectonic inverse basin under compression related to normal subduction of the Pacific plate under the Eurasian plate, characterized by overthrust, westward migration of the depocenter and eastward uplifting of the basin margin.展开更多
文摘Through an integrated study of Mesozoic and Palaeozoic petroleum geology insouthern China and a summing-up of the results of exploration, the authors tentatively put forward aset of methods of studying petroleum systems in modified residual basins or superposed basins. Itscore idea is to put emphasis on the study of the dynamic evolution of petroleum systems. Thetempo-spatial evolution, hydrocarbon-generating processes and hydrocarbon-generating intensities andamounts of resources in different geological stages of chief source rocks are mainly deducedbackward by 3-D basin modelling. The regularities of formation and destruction of oil and gasaccumulations are summarized by analyzing the fossil and existing oil and gas accumulations, thedirection of migration is studied by palaeo-structural analysis, and the dynamic evolution ofPalaeozoic and Mesozoic petroleum systems in southern China is studied according to stages of majortectonic movements. The authors suggest that the realistic exploration targets of Palaeozoic andMesozoic petroleum systems in southern China are secondary and hydrocarbon-regeneration petroleumsystems, while the existing primary petroleum systems are rare. They propose that the favourableareas for exploration of Palaeozoic and Mesozoic petroleum systems in southern China are the frontarea of the Daba Mountains and the steep anticlinal zone on the western side of the Shizhusynclinorium in northeastern Sichuan, the Funin-Yancheng-Hai'an-Xinghua-Baoying area in the northernJiangsu basin, the Qianjiang-Xiantao-Paizhou-Chacan 1 well area in the southern part of the Chenhuarea of the Jianghan basin, the South Poyang basin in Jiangxi and the North subbasin of the Chuxiongbasin. This view has been supported by the discovery of the Zhujiadun gas field in the Yanchengsubbasin of the northern Jiangsu basin and the Kaixiantaixi oil-bearing structure in the southernpart of the Chenhu area of the Jianghan basin.
文摘The Songliao basin (SB) is a superposed basin with two different kinds of basin fills. The lower one is characterized by a fault-bounded volcanogenic succession comprising of intercalated volcanic, pyrodastic and epiclastic rocks. The volcanic rocks, dating from 110 Ma to 130 Ma, are of geochemically active continental margin type. Fast northward migration of the SB block occurred during the major episodes of the volcanism inferred from their paleomagnetic information. The upper one of the basin fill is dominated by non-marine sag-style sedimentary sequence of silicidastics and minor carbonates. The basin center shifted westwards from the early to late Cretaceous revealed by the GGT seismic velocity structure suggesting dynamic change in the basin evolution. Thus, a superposed basin model is proposed. Evolution of the SB involves three periods including (1) Alptian and pre- Aptian: a retroarc basin and range system of Andes type related to Mongolia-Okhotsk collisional belt (MOCB); (2) Albian to Companian: a sag-like strike-slip basin under transtension related to oblique subduction of the Pacific plate along the eastern margin of the Eurasian plate; (3) since Maastrichtian: a tectonic inverse basin under compression related to normal subduction of the Pacific plate under the Eurasian plate, characterized by overthrust, westward migration of the depocenter and eastward uplifting of the basin margin.