The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this articl...The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed.展开更多
Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-par...Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-parameter group. Furthermore, by using a complete discrimination system for polynomial, the classification of all single travelling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More generally, an implicit linear structure in the Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion.展开更多
This paper introduces a modified formal variable separation approach,showcasing a systematic and notably straightforward methodology for analyzing the B-type Kadomtsev-Petviashvili(BKP)equation.Through the application...This paper introduces a modified formal variable separation approach,showcasing a systematic and notably straightforward methodology for analyzing the B-type Kadomtsev-Petviashvili(BKP)equation.Through the application of this approach,we successfully ascertain decomposition solutions,Bäcklund transformations,the Lax pair,and the linear superposition solution associated with the aforementioned equation.Furthermore,we expand the utilization of this technique to the C-type Kadomtsev-Petviashvili(CKP)equation,leading to the derivation of decomposition solutions,Bäcklund transformations,and the Lax pair specific to this equation.The results obtained not only underscore the efficacy of the proposed approach,but also highlight its potential in offering a profound comprehension of integrable behaviors in nonlinear systems.Moreover,this approach demonstrates an efficient framework for establishing interrelations between diverse systems.展开更多
文摘The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed.
文摘Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-parameter group. Furthermore, by using a complete discrimination system for polynomial, the classification of all single travelling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More generally, an implicit linear structure in the Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion.
基金sponsored by the National Natural Science Foundations of China(Nos.12301315,12235007,11975131)the Natural Science Foundation of Zhejiang Province(No.LQ20A010009).
文摘This paper introduces a modified formal variable separation approach,showcasing a systematic and notably straightforward methodology for analyzing the B-type Kadomtsev-Petviashvili(BKP)equation.Through the application of this approach,we successfully ascertain decomposition solutions,Bäcklund transformations,the Lax pair,and the linear superposition solution associated with the aforementioned equation.Furthermore,we expand the utilization of this technique to the C-type Kadomtsev-Petviashvili(CKP)equation,leading to the derivation of decomposition solutions,Bäcklund transformations,and the Lax pair specific to this equation.The results obtained not only underscore the efficacy of the proposed approach,but also highlight its potential in offering a profound comprehension of integrable behaviors in nonlinear systems.Moreover,this approach demonstrates an efficient framework for establishing interrelations between diverse systems.