As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,...As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,e.g.,weather conditions,evaporation ducting,and ship rocking caused by waves.To ensure the data transmission reliability,the block Markov superposition transmission(BMST)codes,which are easily configurable and have predictable performance,are applied in this study.Meanwhile,the physical-layer network coding(PNC)scheme with spatial modulation(SM)is adopted to improve the spectrum utilization.For the BMST-SMPNC system,we propose an iterative algorithm,which utilizes the channel observations and the a priori information from BMST decoder,to compute the soft information corresponding to the XORed bits constructed by the relay node.The results indicate that the proposed scheme outperforms the convolutional coded SM-PNC over fast-fading Rician channels.Especially,the performance can be easily improved in high spatial correlation maritime channel by increasing the memory m.展开更多
In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fadin...In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.展开更多
In this paper,we present a new class of spatially coupled codes obtained by using both non-recursive and recursive block-oriented superposition.The resulting codes are termed as bidirectional block Markov superpositio...In this paper,we present a new class of spatially coupled codes obtained by using both non-recursive and recursive block-oriented superposition.The resulting codes are termed as bidirectional block Markov superposition transmission(BiBMST)codes.Firstly,we perform an iterative decoding threshold analysis according to protograph-based extrinsic information transfer(PEXIT)charts for the BiBMST codes over the binary erasure channels(BECs).Secondly,we derive the generator and parity-check matrices of the BiBMST codes.Thirdly,extensive numerical results are presented to show the advantages of the proposed BiBMST codes.Particularly,our numerical results show that,under the constraint of an equal decoding latency,the BiBMST codes perform better than the recursive BMST(rBMST)codes.However,the simulation results show that,in finite-length regime,negligible performance gain is obtained by increasing the encoding memory.We solve this limitation by introducing partial superposition,and the resulting codes are termed as partially-connected BiBMST(PC-BiBMST)code.Analytical results have confirmed the advantages of the PC-BiBMST codes over the original BiBMST codes.We also present extensive simulation results to show the performance advantages of the PC-BiBMST codes over the spatially coupled low-density parity-check(SC-LDPC)codes,spatially coupled generalized LDPC(SC-GLDPC)codes,and the original BiBMST codes in the finite-length regime.展开更多
In this paper,based on the block Markov superposition transmission(BMST)technique,we present a new class of coupled low-density parity-check(LDPC)codes for the transport block(TB)-based transmission to improve the err...In this paper,based on the block Markov superposition transmission(BMST)technique,we present a new class of coupled low-density parity-check(LDPC)codes for the transport block(TB)-based transmission to improve the error-correcting performance.For encoding,the previous LDPC codewords corresponding to a TB(at prior time slot)are interleaved and superimposed onto the current LDPC codewords,resulting in the transmitted codewords.For decoding,the sliding window decoding algorithm with sum-product or min-sum implementations can be employed,inheriting a relatively low-latency decoding.A distinguished advantage of the proposed coded transmission over spatially coupled LDPC(SC-LDPC)codes is that the encoder/decoder of the proposed codes can be designed by reusing the encoder/decoder architecture of component block LDPC codes.To analyze the waterfall performance of BMST-LDPC code ensembles,we present the protograph-based EXIT chart analysis,which can efficiently predict the error-correcting performance in waterfall region.To analyze the error-floor performance of BMST-LDPC codes,we employ the genie-aided(GA)lower bound,which can efficiently predict the error-correcting performance in error-floor region.For ease of implementation,the BMST-LDPC codes are constructed by taking the(2,4)-raptor-like LDPC codes or the 5G LDPC codes as the basic components.The numerical results reveal that the proposed codes can have capacity-approaching performance,exhibiting a gap of 0.007 dB away from the corresponding Shannon limit.They also reveal that,by using the proposed BMST construction,the error-correcting performance of the original 5G block LDPC codes can be significantly improved,achieving coding gains up to one dB over the AWGN channels and two dB over the fast fading channels.展开更多
In this paper,we propose a transmission scheme for uplink and downlink transmissions,where the fifth generation(5G)low-density parity-check(LDPC)codes are implemented for error correction.In the proposed scheme,the ac...In this paper,we propose a transmission scheme for uplink and downlink transmissions,where the fifth generation(5G)low-density parity-check(LDPC)codes are implemented for error correction.In the proposed scheme,the acknowledgment(ACK)or negative acknowledgment(NACK)feedback information is transmitted along with the payload data by cyclically shifting coded sequence,while the re-transmitted codewords are superimposed(XORed)partially on the current codewords.The distinguished feature of the proposed transmission scheme is that it requires neither extra transmission bandwidth nor extra transmission power.We also propose to truncate the error patterns for the purpose of reducing the implementation complexity and reducing the error propagation.Numerical results show that the proposed scheme significantly outperforms conventional LDPC-coded transmission.For the 5G LDPC code with length 1920 at the signal-to-noise ratio(SNR)of 1.3 dB,the word error rate(WER)of the data transmitted by the proposed scheme is about 10^(−4),while that of the conventional LDPC-coded transmission is about 10^(−2).展开更多
基金the National Key Research and Development Program of China(No.2017YFE0112600)the National Science Foundation of China[No.61971454,No.91438101&No.61771499]the National Science Foundation of Guangdong,China[No.2016A030308008].
文摘As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,e.g.,weather conditions,evaporation ducting,and ship rocking caused by waves.To ensure the data transmission reliability,the block Markov superposition transmission(BMST)codes,which are easily configurable and have predictable performance,are applied in this study.Meanwhile,the physical-layer network coding(PNC)scheme with spatial modulation(SM)is adopted to improve the spectrum utilization.For the BMST-SMPNC system,we propose an iterative algorithm,which utilizes the channel observations and the a priori information from BMST decoder,to compute the soft information corresponding to the XORed bits constructed by the relay node.The results indicate that the proposed scheme outperforms the convolutional coded SM-PNC over fast-fading Rician channels.Especially,the performance can be easily improved in high spatial correlation maritime channel by increasing the memory m.
基金partially supported by the Basic Research Project of Guangdong Provincial Natural Science Foundation (No.2016A030308008)the National Natural Science Foundation of China (No.91438101 and No.61501206)the National Basic Research Program of China (973 Program) (No.2012CB316100)
文摘In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.
基金supported by the National Natural Science Foundation of China(Nos.62271233,12271215,and 62261003)the Basic Research Program of Guangzhou Municipal Science and Technology Bureau(No.202201020036)the Guangdong Provincial Natural Science Foundation(Nos.2022A1515010029 and 2021A1515011906).
文摘In this paper,we present a new class of spatially coupled codes obtained by using both non-recursive and recursive block-oriented superposition.The resulting codes are termed as bidirectional block Markov superposition transmission(BiBMST)codes.Firstly,we perform an iterative decoding threshold analysis according to protograph-based extrinsic information transfer(PEXIT)charts for the BiBMST codes over the binary erasure channels(BECs).Secondly,we derive the generator and parity-check matrices of the BiBMST codes.Thirdly,extensive numerical results are presented to show the advantages of the proposed BiBMST codes.Particularly,our numerical results show that,under the constraint of an equal decoding latency,the BiBMST codes perform better than the recursive BMST(rBMST)codes.However,the simulation results show that,in finite-length regime,negligible performance gain is obtained by increasing the encoding memory.We solve this limitation by introducing partial superposition,and the resulting codes are termed as partially-connected BiBMST(PC-BiBMST)code.Analytical results have confirmed the advantages of the PC-BiBMST codes over the original BiBMST codes.We also present extensive simulation results to show the performance advantages of the PC-BiBMST codes over the spatially coupled low-density parity-check(SC-LDPC)codes,spatially coupled generalized LDPC(SC-GLDPC)codes,and the original BiBMST codes in the finite-length regime.
基金supported in part by the National Key R&D Program of China(2020YFB1807100)in part by the National Natural Science Foundation of China(61971454)in part by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011056).
文摘In this paper,based on the block Markov superposition transmission(BMST)technique,we present a new class of coupled low-density parity-check(LDPC)codes for the transport block(TB)-based transmission to improve the error-correcting performance.For encoding,the previous LDPC codewords corresponding to a TB(at prior time slot)are interleaved and superimposed onto the current LDPC codewords,resulting in the transmitted codewords.For decoding,the sliding window decoding algorithm with sum-product or min-sum implementations can be employed,inheriting a relatively low-latency decoding.A distinguished advantage of the proposed coded transmission over spatially coupled LDPC(SC-LDPC)codes is that the encoder/decoder of the proposed codes can be designed by reusing the encoder/decoder architecture of component block LDPC codes.To analyze the waterfall performance of BMST-LDPC code ensembles,we present the protograph-based EXIT chart analysis,which can efficiently predict the error-correcting performance in waterfall region.To analyze the error-floor performance of BMST-LDPC codes,we employ the genie-aided(GA)lower bound,which can efficiently predict the error-correcting performance in error-floor region.For ease of implementation,the BMST-LDPC codes are constructed by taking the(2,4)-raptor-like LDPC codes or the 5G LDPC codes as the basic components.The numerical results reveal that the proposed codes can have capacity-approaching performance,exhibiting a gap of 0.007 dB away from the corresponding Shannon limit.They also reveal that,by using the proposed BMST construction,the error-correcting performance of the original 5G block LDPC codes can be significantly improved,achieving coding gains up to one dB over the AWGN channels and two dB over the fast fading channels.
基金supported by National Key R&D Program of China(No.2020YFB1807100)the National Natural Science Foundation of China(No.61971454).
文摘In this paper,we propose a transmission scheme for uplink and downlink transmissions,where the fifth generation(5G)low-density parity-check(LDPC)codes are implemented for error correction.In the proposed scheme,the acknowledgment(ACK)or negative acknowledgment(NACK)feedback information is transmitted along with the payload data by cyclically shifting coded sequence,while the re-transmitted codewords are superimposed(XORed)partially on the current codewords.The distinguished feature of the proposed transmission scheme is that it requires neither extra transmission bandwidth nor extra transmission power.We also propose to truncate the error patterns for the purpose of reducing the implementation complexity and reducing the error propagation.Numerical results show that the proposed scheme significantly outperforms conventional LDPC-coded transmission.For the 5G LDPC code with length 1920 at the signal-to-noise ratio(SNR)of 1.3 dB,the word error rate(WER)of the data transmitted by the proposed scheme is about 10^(−4),while that of the conventional LDPC-coded transmission is about 10^(−2).