期刊文献+
共找到582篇文章
< 1 2 30 >
每页显示 20 50 100
Machine learning applications in stroke medicine:advancements,challenges,and future prospectives 被引量:3
1
作者 Mario Daidone Sergio Ferrantelli Antonino Tuttolomondo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期769-773,共5页
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique... Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease. 展开更多
关键词 cerebrovascular disease deep learning machine learning reinforcement learning STROKE stroke therapy supervised learning unsupervised learning
下载PDF
Weakly Supervised Network with Scribble-Supervised and Edge-Mask for Road Extraction from High-Resolution Remote Sensing Images
2
作者 Supeng Yu Fen Huang Chengcheng Fan 《Computers, Materials & Continua》 SCIE EI 2024年第4期549-562,共14页
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human... Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods. 展开更多
关键词 Semantic segmentation road extraction weakly supervised learning scribble supervision remote sensing image
下载PDF
AMachine Learning Approach to Cyberbullying Detection in Arabic Tweets
3
作者 Dhiaa Musleh Atta Rahman +8 位作者 Mohammed Abbas Alkherallah Menhal Kamel Al-Bohassan Mustafa Mohammed Alawami Hayder Ali Alsebaa Jawad Ali Alnemer Ghazi Fayez Al-Mutairi May Issa Aldossary Dalal A.Aldowaihi Fahd Alhaidari 《Computers, Materials & Continua》 SCIE EI 2024年第7期1033-1054,共22页
With the rapid growth of internet usage,a new situation has been created that enables practicing bullying.Cyberbullying has increased over the past decade,and it has the same adverse effects as face-to-face bullying,l... With the rapid growth of internet usage,a new situation has been created that enables practicing bullying.Cyberbullying has increased over the past decade,and it has the same adverse effects as face-to-face bullying,like anger,sadness,anxiety,and fear.With the anonymity people get on the internet,they tend to bemore aggressive and express their emotions freely without considering the effects,which can be a reason for the increase in cyberbullying and it is the main motive behind the current study.This study presents a thorough background of cyberbullying and the techniques used to collect,preprocess,and analyze the datasets.Moreover,a comprehensive review of the literature has been conducted to figure out research gaps and effective techniques and practices in cyberbullying detection in various languages,and it was deduced that there is significant room for improvement in the Arabic language.As a result,the current study focuses on the investigation of shortlisted machine learning algorithms in natural language processing(NLP)for the classification of Arabic datasets duly collected from Twitter(also known as X).In this regard,support vector machine(SVM),Naive Bayes(NB),Random Forest(RF),Logistic regression(LR),Bootstrap aggregating(Bagging),Gradient Boosting(GBoost),Light Gradient Boosting Machine(LightGBM),Adaptive Boosting(AdaBoost),and eXtreme Gradient Boosting(XGBoost)were shortlisted and investigated due to their effectiveness in the similar problems.Finally,the scheme was evaluated by well-known performance measures like accuracy,precision,Recall,and F1-score.Consequently,XGBoost exhibited the best performance with 89.95%accuracy,which is promising compared to the state-of-the-art. 展开更多
关键词 Supervised machine learning ensemble learning CYBERBULLYING Arabic tweets NLP
下载PDF
Relational Turkish Text Classification Using Distant Supervised Entities and Relations
4
作者 Halil Ibrahim Okur Kadir Tohma Ahmet Sertbas 《Computers, Materials & Continua》 SCIE EI 2024年第5期2209-2228,共20页
Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved throu... Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research. 展开更多
关键词 Text classification relation extraction NER distant supervision deep learning machine learning
下载PDF
Complementary memtransistors for neuromorphic computing: How, what and why
5
作者 Qi Chen Yue Zhou +4 位作者 Weiwei Xiong Zirui Chen Yasai Wang Xiangshui Miao Yuhui He 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期64-80,共17页
Memtransistors in which the source-drain channel conductance can be nonvolatilely manipulated through the gate signals have emerged as promising components for implementing neuromorphic computing.On the other side,it ... Memtransistors in which the source-drain channel conductance can be nonvolatilely manipulated through the gate signals have emerged as promising components for implementing neuromorphic computing.On the other side,it is known that the complementary metal-oxide-semiconductor(CMOS)field effect transistors have played the fundamental role in the modern integrated circuit technology.Therefore,will complementary memtransistors(CMT)also play such a role in the future neuromorphic circuits and chips?In this review,various types of materials and physical mechanisms for constructing CMT(how)are inspected with their merits and need-to-address challenges discussed.Then the unique properties(what)and poten-tial applications of CMT in different learning algorithms/scenarios of spiking neural networks(why)are reviewed,including super-vised rule,reinforcement one,dynamic vision with in-sensor computing,etc.Through exploiting the complementary structure-related novel functions,significant reduction of hardware consuming,enhancement of energy/efficiency ratio and other advan-tages have been gained,illustrating the alluring prospect of design technology co-optimization(DTCO)of CMT towards neuro-morphic computing. 展开更多
关键词 complementary memtransistor neuromorphic computing reward-modulated spike timing-dependent plasticity remote supervise method in-sensor computing
下载PDF
Local saliency consistency-based label inference for weakly supervised salient object detection using scribble annotations
6
作者 Shuo Zhao Peng Cui +1 位作者 Jing Shen Haibo Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期239-249,共11页
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully superv... Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results. 展开更多
关键词 label inference salient object detection weak supervision
下载PDF
Meibomian glands segmentation in infrared images with limited annotation
7
作者 Jia-Wen Lin Ling-Jie Lin +5 位作者 Feng Lu Tai-Chen Lai Jing Zou Lin-Ling Guo Zhi-Ming Lin Li Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期401-407,共7页
●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS... ●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS:Totally 203 infrared meibomian images from 138 patients with dry eye disease,accompanied by corresponding annotations,were gathered for the study.A rectified scribble-supervised gland segmentation(RSSGS)model,incorporating temporal ensemble prediction,uncertainty estimation,and a transformation equivariance constraint,was introduced to address constraints imposed by limited supervision information inherent in scribble annotations.The viability and efficacy of the proposed model were assessed based on accuracy,intersection over union(IoU),and dice coefficient.●RESULTS:Using manual labels as the gold standard,RSSGS demonstrated outcomes with an accuracy of 93.54%,a dice coefficient of 78.02%,and an IoU of 64.18%.Notably,these performance metrics exceed the current weakly supervised state-of-the-art methods by 0.76%,2.06%,and 2.69%,respectively.Furthermore,despite achieving a substantial 80%reduction in annotation costs,it only lags behind fully annotated methods by 0.72%,1.51%,and 2.04%.●CONCLUSION:An innovative automatic segmentation model is developed for MGs in infrared eyelid images,using scribble annotation for training.This model maintains an exceptionally high level of segmentation accuracy while substantially reducing training costs.It holds substantial utility for calculating clinical parameters,thereby greatly enhancing the diagnostic efficiency of ophthalmologists in evaluating meibomian gland dysfunction. 展开更多
关键词 infrared meibomian glands images meibomian gland dysfunction meibomian glands segmentation weak supervision scribbled annotation
下载PDF
中国电动机质量监管及标准体系概述
8
作者 王鑫 辛勇 +1 位作者 孙玉泉 丛林 《China Standardization》 2024年第4期69-73,共5页
This paper systematically analyzes the product quality supervision methods in China,introduces the main functions of market regulation departments and the product supervision and random inspection process,and introduc... This paper systematically analyzes the product quality supervision methods in China,introduces the main functions of market regulation departments and the product supervision and random inspection process,and introduces the channels for feedback on consumers’quality and safety problems,the online platform for consumer problem disposal.It also summarizes the main standards categories and standards systems for electric motors in China,and the standards and key inspection items for supervision and random inspection. 展开更多
关键词 electric motor quality supervision supervision and random inspection STANDARDS
下载PDF
Land Use Land Cover Analysis for Godavari Basin in Maharashtra Using Geographical Information System and Remote Sensing
9
作者 Pallavi Saraf Dattatray G. Regulwar 《Journal of Geographic Information System》 2024年第1期21-31,共11页
The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the la... The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region. 展开更多
关键词 GIS Remote Sensing Land Use Land Cover Change Change Detection Supervised Classification
下载PDF
An Analysis of Land Use and Land Cover Changes, and Implications for Conservation in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, 2002-2022
10
作者 Musekiwa Innocent Maruza Edson Gandiwa +3 位作者 Never Muboko Ishmael Sango Tawanda Tarakini Nobert Tafadzwa Mukomberanwa 《Open Journal of Ecology》 2024年第9期706-730,共25页
Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce... Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce the changes. The study aims to evaluate and quantify the historical changes in land use and land cover in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, from 2002 to 2022. The objective of the study was to analyse the LULC changes in Ward 2 (Mukumbura), Mt Darwin, Northern Zimbabwe, for a period of 20 years using geospatial techniques. Landsat satellite images were processed using Google Earth Engine (GEE) and the supervised classification with maximum likelihood algorithm was employed to generate LULC maps between 2002 and 2022 with a five (5) year interval, investigating the following variables, forest cover, barren land, water cover and the fields. Findings revealed a substantial reduction in forest cover by 38.8%, water bodies (wetlands, ponds, and rivers) declined by 55.6%, whilst fields (crop/agricultural fields) increased by 93.3% and the barren land cover increased by 26.3% from 2002 to 2022. These findings point to substantial changes in LULC over the observed years. LULC changes have resulted in habitat fragmentation, reduced biodiversity, and the disruption of ecosystem functions. The study concludes that if these deforestation trends, cultivation, and settlement land expansion continue, the ward will have limited indigenous fruit trees. Therefore, the causes for LULC changes must be controlled, sustainable forest resources use practiced, hence the need to domesticate the indigenous fruit trees in arborloo toilets. 展开更多
关键词 Anthropogenic Activities DEFORESTATION Geospatial Analysis Land Use/Land Cover Supervised Classification
下载PDF
A Hybrid Learning Algorithm for Breast Cancer Diagnosis
11
作者 Alio Boubacar Goga Harouna Naroua Chaibou Kadri 《Journal of Intelligent Learning Systems and Applications》 2024年第3期262-273,共12页
In many fields, particularly that of health, the diagnosis of diseases is a very difficult task to carry out. Therefore, early detection of diseases using artificial intelligence tools can be of paramount importance i... In many fields, particularly that of health, the diagnosis of diseases is a very difficult task to carry out. Therefore, early detection of diseases using artificial intelligence tools can be of paramount importance in the medical field. In this study, we proposed an intelligent system capable of performing diagnoses for radiologists. The support system is designed to evaluate mammographic images, thereby classifying normal and abnormal patients. The proposed method (DiagBC for Breast Cancer Diagnosis) combines two (2) intelligent unsupervised learning algorithms (the C-Means clustering algorithm and the Gaussian Mixture Model) for the segmentation of medical images and an algorithm for supervised learning (a modified DenseNet) for the diagnosis of breast images. Ultimately, a prototype of the proposed system was implemented for the Magori Polyclinic in Niamey (Niger) making it possible to diagnose (or classify) breast cancer into two (2) classes: the normal class and the abnormal class. 展开更多
关键词 Image Diagnosis SEGMENTATION DenseNet Unsupervised Learning Supervised Learning Breast Cancer
下载PDF
Regulatory Issues and Countermeasures in International Financial Markets
12
作者 Qi Lin 《Proceedings of Business and Economic Studies》 2024年第4期80-85,共6页
With the deepening of globalization,the development speed of capital markets is constantly accelerating,presenting a trend of globalization.At the same time,the emergence of multiple forms of trading platforms and div... With the deepening of globalization,the development speed of capital markets is constantly accelerating,presenting a trend of globalization.At the same time,the emergence of multiple forms of trading platforms and diversified financial products further highlights the competitive relationship between security exchanges and other trading platforms.While promoting the transformation of security exchange forms in various countries,it also prompts governments to re-examine the financial regulatory system of securities markets.In this situation,it is very important to research the international financial market and financial regulatory system.This article explores the regulatory issues and countermeasures in the international financial market,intending to promote the stability and healthy development of the international financial market. 展开更多
关键词 International financial markets SUPERVISION PROBLEM COUNTERMEASURE
下载PDF
Migration and Spatiotemporal Land Cover Change: A Case of Bosomtwe Lake Basin, Ghana
13
作者 Richard Kwabena Adams Lingling Zhang Zongzhi Wang 《Advances in Remote Sensing》 2024年第1期18-40,共23页
Internal migration is highly valued due to its increasingly acknowledged potential for social and economic development. However, despite its significant contribution to the development of towns and cities, it has led ... Internal migration is highly valued due to its increasingly acknowledged potential for social and economic development. However, despite its significant contribution to the development of towns and cities, it has led to the deterioration of many ecosystems globally. Lake Bosomtwe, a natural Lake in Ghana and one of the six major meteoritic lakes in the world is affected by land cover changes caused by the rising effects of migration, population expansion, and urbanization, owing to the development of tourist facilities on the lakeshore. This study investigated land cover change trajectories using a post-classification comparison approach and identified the factors influencing alteration in the Lake Bosomtwe Basin. Using Landsat imagery, an integrated approach of remote sensing, geographical information systems (GIS), and statistical analysis was successfully employed to analyze the land cover change of the basin. The findings show that over the 17 years, the basin’s forest cover decreased significantly by 16.02%, indicating that population expansion significantly affects changes in land cover. Ultimately, this study will raise the awareness of stakeholders, decision-makers, policy-makers, government, and non-governmental agencies to evaluate land use development patterns, optimize land use structures, and provide a reference for the formulation of sustainable development policies to promote the sustainable development of the ecological environment. 展开更多
关键词 Land Cover Change Supervised Classification MIGRATION Landsat Imagery Environmental Sustainability
下载PDF
Transfer Learning Approach to Classify the X-Ray Image that Corresponds to Corona Disease Using ResNet50 Pre-Trained by ChexNet
14
作者 Mahyar Bolhassani 《Journal of Intelligent Learning Systems and Applications》 2024年第2期80-90,共11页
The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individu... The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model. 展开更多
关键词 X-Ray Classification Convolutional Neural Network ResNet Transfer Learning Supervised Learning COVID-19 Chest X-Ray
下载PDF
ATFF: Advanced Transformer with Multiscale Contextual Fusion for Medical Image Segmentation
15
作者 Xinping Guo Lei Wang +2 位作者 Zizhen Huang Yukun Zhang Yaolong Han 《Journal of Computer and Communications》 2024年第3期238-251,共14页
Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance inte... Deep convolutional neural network (CNN) greatly promotes the automatic segmentation of medical images. However, due to the inherent properties of convolution operations, CNN usually cannot establish long-distance interdependence, which limits the segmentation performance. Transformer has been successfully applied to various computer vision, using self-attention mechanism to simulate long-distance interaction, so as to capture global information. However, self-attention lacks spatial location and high-performance computing. In order to solve the above problems, we develop a new medical transformer, which has a multi-scale context fusion function and can be used for medical image segmentation. The proposed model combines convolution operation and attention mechanism to form a u-shaped framework, which can capture both local and global information. First, the traditional converter module is improved to an advanced converter module, which uses post-layer normalization to obtain mild activation values, and uses scaled cosine attention with a moving window to obtain accurate spatial information. Secondly, we also introduce a deep supervision strategy to guide the model to fuse multi-scale feature information. It further enables the proposed model to effectively propagate feature information across layers, Thanks to this, it can achieve better segmentation performance while being more robust and efficient. The proposed model is evaluated on multiple medical image segmentation datasets. Experimental results demonstrate that the proposed model achieves better performance on a challenging dataset (ETIS) compared to existing methods that rely only on convolutional neural networks, transformers, or a combination of both. The mDice and mIou indicators increased by 2.74% and 3.3% respectively. 展开更多
关键词 Medical Image Segmentation Advanced Transformer Deep Supervision Attention Mechanism
下载PDF
Comparison of Two Recurrent Neural Networks for Rainfall-Runoff Modeling in the Zou River Basin at Atchérigbé (Bénin)
16
作者 Iboukoun Eliézer Biao Oscar Houessou +1 位作者 Pierre Jérôme Zohou Adéchina Eric Alamou 《Journal of Geoscience and Environment Protection》 2024年第9期167-181,共15页
Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural ... Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural networks for rainfall-runoff modeling in the Zou River basin at Atchérigbé outlet. To this end, we used daily precipitation data over the period 1988-2010 as input of the models, such as the Long Short-Term Memory (LSTM) and Recurrent Gate Networks (GRU) to simulate river discharge in the study area. The investigated models give good results in calibration (R2 = 0.888, NSE = 0.886, and RMSE = 0.42 for LSTM;R2 = 0.9, NSE = 0.9 and RMSE = 0.397 for GRU) and in validation (R2 = 0.865, NSE = 0.851, and RMSE = 0.329 for LSTM;R2 = 0.9, NSE = 0.865 and RMSE = 0.301 for GRU). This good performance of LSTM and GRU models confirms the importance of models based on machine learning in modeling hydrological phenomena for better decision-making. 展开更多
关键词 Supervised Learning Modeling Zou Basin Long and Short-Term Memory Gated Recurrent Unit Hyperparameters Optimization
下载PDF
开展医疗保障经办机构飞行检查的问题及其产生因素的质性研究 被引量:3
17
作者 张力源 万益静 +2 位作者 咸云 罗小峰 张智若 《中国卫生资源》 CSCD 北大核心 2023年第1期92-96,共5页
目的梳理总结我国开展医疗保障(以下简称“医保”)经办机构飞行检查的问题及其产生因素,为完善我国医保基金飞行检查机制,加强对医保经办机构的监管提供建议和参考。方法于2022年7—9月,采用典型抽样法,选取4个省份的医保专家进行半结... 目的梳理总结我国开展医疗保障(以下简称“医保”)经办机构飞行检查的问题及其产生因素,为完善我国医保基金飞行检查机制,加强对医保经办机构的监管提供建议和参考。方法于2022年7—9月,采用典型抽样法,选取4个省份的医保专家进行半结构式访谈,样本量的确定以不再出现新的信息为标准,运用colaizzi七步分析法对获取的资料进行归纳分析。结果通过对11名专家访谈资料的分析,归纳提炼开展医保经办机构飞行检查的问题,包括力度不足、队伍构成不健全、缺乏具体内容及标准等,以及导致问题产生的因素,包括选择效应、缺乏标准化做法、区域差异等。结论医保经办机构的行为及工作效率影响着医保基金安全,对其进行监管十分必要,但开展医保经办机构飞行检查的过程中存在诸多问题。建议推进制度建设,加大飞行检查力度;丰富队伍构成,提升飞行检查质量;完善指标建立,规范飞行检查内容。 展开更多
关键词 飞行检查unannounced inspection 医疗保障经办机构medical insurance agency 医疗保险基金监管supervision of medical insurance fund 质性研究qualitative research
下载PDF
结核病患者手机应用程序督导服药的应用及其影响因素
18
作者 秦楠 宁晨曦 +3 位作者 张祖荣 徐春华 吴哲渊 陈静 《中国卫生资源》 CSCD 北大核心 2023年第4期358-362,369,共6页
目的分析上海市2021年新发非利福平耐药肺结核患者手机应用程序(application,APP)督导服药的应用情况及其影响因素,为进一步优化手机APP督导管理方式的应用策略提供依据。方法通过易督导患者管理系统(e-Patient Service System,e-PSS)... 目的分析上海市2021年新发非利福平耐药肺结核患者手机应用程序(application,APP)督导服药的应用情况及其影响因素,为进一步优化手机APP督导管理方式的应用策略提供依据。方法通过易督导患者管理系统(e-Patient Service System,e-PSS)平台收集患者管理数据,通过《中国疾病预防控制信息系统》结核病子系统收集患者性别、年龄组、职业、户籍、病原学结果等信息。对手机APP督导管理应用情况及相关影响因素进行统计分析。采用卡方检验和多因素非条件logistic回归分析结核病患者使用手机APP督导服药的影响因素。结果2021年上海市采用e-PSS平台管理患者2687例,其中使用手机APP督导服药的患者790例,占29.4%。使用手机APP督导服药的患者总体服药率为99.8%,总体规则服药率为99.5%,坚持打卡率为24.1%。多因素分析结果显示,病原学结果阳性(OR值为2.328,95%CI为1.474~3.825)及阴性(OR值为1.699,95%CI为1.067~2.809),年龄60岁及以下(≤20岁、>20~40岁、>40~60岁的OR值分别为11.017、16.864、9.002,95%CI分别为3.793~40.430、6.881~55.914、3.674~29.837),职业为农民(OR值为1.801,95%CI为1.289~2.519)的患者更倾向于使用手机APP进行服药管理。结论结核病患者日常服药管理应针对不同类型人群采用不同的督导管理方式,对于>20~40岁年龄组、病原学阳性、职业为农民、有合并症的结核病患者,社区医生可以优先推荐使用手机APP进行服药管理。 展开更多
关键词 结核病tuberculosis 手机应用程序application APP 督导服药supervised medication 患者管理patient administration 服药依从性medication compliance
下载PDF
Survey on AI and Machine Learning Techniques for Microgrid Energy Management Systems 被引量:2
19
作者 Aditya Joshi Skieler Capezza +1 位作者 Ahmad Alhaji Mo-Yuen Chow 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1513-1529,共17页
In the era of an energy revolution,grid decentralization has emerged as a viable solution to meet the increasing global energy demand by incorporating renewables at the distributed level.Microgrids are considered a dr... In the era of an energy revolution,grid decentralization has emerged as a viable solution to meet the increasing global energy demand by incorporating renewables at the distributed level.Microgrids are considered a driving component for accelerating grid decentralization.To optimally utilize the available resources and address potential challenges,there is a need to have an intelligent and reliable energy management system(EMS)for the microgrid.The artificial intelligence field has the potential to address the problems in EMS and can provide resilient,efficient,reliable,and scalable solutions.This paper presents an overview of existing conventional and AI-based techniques for energy management systems in microgrids.We analyze EMS methods for centralized,decentralized,and distributed microgrids separately.Then,we summarize machine learning techniques such as ANNs,federated learning,LSTMs,RNNs,and reinforcement learning for EMS objectives such as economic dispatch,optimal power flow,and scheduling.With the incorporation of AI,microgrids can achieve greater performance efficiency and more reliability for managing a large number of energy resources.However,challenges such as data privacy,security,scalability,explainability,etc.,need to be addressed.To conclude,the authors state the possible future research directions to explore AI-based EMS's potential in real-world applications. 展开更多
关键词 CONSENSUS energy management system(EMS) reinforcement learning supervised learning
下载PDF
Foodborne doping and supervision in sports 被引量:1
20
作者 Wei Chen Xiaoyu Cheng +1 位作者 Yingnan Ma Ning Chen 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期1925-1936,共12页
Cases of foodborne doping are frequently reported in sports events and can cause severe consequences for athletes.The foodborne doping can be divided into natural endogenous and artifi cially added foods according to ... Cases of foodborne doping are frequently reported in sports events and can cause severe consequences for athletes.The foodborne doping can be divided into natural endogenous and artifi cially added foods according to the sources,including anabolic agents,stimulants,diuretics,β-blockers,β2 agonists and others.In order to control foodborne doping,chromatographic technique,immunoassay,nuclear magnetic resonance,biosensor technology,pyrolytic spectroscopy,comprehensive analysis and electrochemical analysis have usually used as analytical and inspection strategies.Meanwhile,the legislation of anti-doping,the improvement of testing standard and technology,and the prevention and control of food safety,as well as the improvement of risk perception of athletes are highly necessary for achieving the effective risk control and supervision of foodborne doping,which will be benefi cial for athletes,doctors and administrators to avoid the risks of foodborne doping test and reduce foodborne doping risks for the health of athletes. 展开更多
关键词 Foodborne doping Doping control ATHLETES ANTI-DOPING SUPERVISION
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部