Coronavirus has infected more than 753 million people,ranging in severity from one person to another,where more than six million infected people died worldwide.Computer-aided diagnostic(CAD)with artificial intelligenc...Coronavirus has infected more than 753 million people,ranging in severity from one person to another,where more than six million infected people died worldwide.Computer-aided diagnostic(CAD)with artificial intelligence(AI)showed outstanding performance in effectively diagnosing this virus in real-time.Computed tomography is a complementary diagnostic tool to clarify the damage of COVID-19 in the lungs even before symptoms appear in patients.This paper conducts a systematic literature review of deep learning methods for classifying the segmentation of COVID-19 infection in the lungs.We used the methodology of systematic reviews and meta-analyses(PRISMA)flow method.This research aims to systematically analyze the supervised deep learning methods,open resource datasets,data augmentation methods,and loss functions used for various segment shapes of COVID-19 infection from computerized tomography(CT)chest images.We have selected 56 primary studies relevant to the topic of the paper.We have compared different aspects of the algorithms used to segment infected areas in the CT images.Limitations to deep learning in the segmentation of infected areas still need to be developed to predict smaller regions of infection at the beginning of their appearance.展开更多
In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of thei...In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of their size or sector of activity, are now the target of advanced persistent threats. The Work 2035 study also revealed that cyber crimes (such as critical infrastructure hacks) and massive data breaches are major sources of concern. Thus, it is important for organizations to guarantee a minimum level of security to avoid potential attacks that can cause paralysis of systems, loss of sensitive data, exposure to blackmail, damage to reputation or even a commercial harm. To do this, among other means, hardening is used, the main objective of which is to reduce the attack surface within a company. The execution of the hardening configurations as well as the verification of these are carried out on the servers and network equipment with the aim of reducing the number of openings present by keeping only those which are necessary for proper operation. However, nowadays, in many companies, these tasks are done manually. As a result, the execution and verification of hardening configurations are very often subject to potential errors but also highly consuming human and financial resources. The problem is that it is essential for operators to maintain an optimal level of security while minimizing costs, hence the interest in automating hardening processes and verifying the hardening of servers and network equipment. It is in this logic that we propose within the framework of this work the reinforcement of the security of the information systems (IS) by the automation of the mechanisms of hardening. In our work, we have, on the one hand, set up a hardening procedure in accordance with international security standards for servers, routers and switches and, on the other hand, designed and produced a functional application which makes it possible to: 1) Realise the configuration of the hardening;2) Verify them;3) Correct the non conformities;4) Write and send by mail a verification report for the configurations;5) And finally update the procedures of hardening. Our web application thus created allows in less than fifteen (15) minutes actions that previously took at least five (5) hours of time. This allows supervised network operators to save time and money, but also to improve their security standards in line with international standards.展开更多
Nowadays, in data science, supervised learning algorithms are frequently used to perform text classification. However, African textual data, in general, have been studied very little using these methods. This article ...Nowadays, in data science, supervised learning algorithms are frequently used to perform text classification. However, African textual data, in general, have been studied very little using these methods. This article notes the particularity of the data and measures the level of precision of predictions of naive Bayes algorithms, decision tree, and SVM (Support Vector Machine) on a corpus of computer jobs taken on the internet. This is due to the data imbalance problem in machine learning. However, this problem essentially focuses on the distribution of the number of documents in each class or subclass. Here, we delve deeper into the problem to the word count distribution in a set of documents. The results are compared with those obtained on a set of French IT offers. It appears that the precision of the classification varies between 88% and 90% for French offers against 67%, at most, for Cameroonian offers. The contribution of this study is twofold. Indeed, it clearly shows that, in a similar job category, job offers on the internet in Cameroon are more unstructured compared to those available in France, for example. Moreover, it makes it possible to emit a strong hypothesis according to which sets of texts having a symmetrical distribution of the number of words obtain better results with supervised learning algorithms.展开更多
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human...Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.展开更多
Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved throu...Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.展开更多
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully superv...Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.展开更多
The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the la...The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.展开更多
As educational reforms intensify and societal emphasis shifts towards empowerment,the traditional discourse paradigm of management and control in educational supervision faces growing challenges.This paper explores th...As educational reforms intensify and societal emphasis shifts towards empowerment,the traditional discourse paradigm of management and control in educational supervision faces growing challenges.This paper explores the transformation of this discourse paradigm through the lens of empowerment,analyzing its distinct characteristics,potential pathways,and effective strategies.This paper begins by reviewing the concept of empowerment and examining the current research landscape surrounding the discourse paradigm in educational supervision.Subsequently,we conduct a comparative analysis of the“control”and“empowerment”paradigms,highlighting their essential differences.This analysis illuminates the key characteristics of an empowerment-oriented approach to educational supervision,particularly its emphasis on dialogue,collaboration,participation,and,crucially,empowerment itself.Ultimately,this research advocates for a shift in educational supervision towards an empowerment-oriented discourse system.This entails a multi-pronged approach:transforming ingrained beliefs,embracing renewed pedagogical concepts,fostering methodological innovation,and optimizing existing mechanisms and strategies within educational supervision.These changes are proposed to facilitate the more effective alignment of educational supervision with the pursuit of high-quality education.展开更多
The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individu...The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model.展开更多
Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural ...Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural networks for rainfall-runoff modeling in the Zou River basin at Atchérigbé outlet. To this end, we used daily precipitation data over the period 1988-2010 as input of the models, such as the Long Short-Term Memory (LSTM) and Recurrent Gate Networks (GRU) to simulate river discharge in the study area. The investigated models give good results in calibration (R2 = 0.888, NSE = 0.886, and RMSE = 0.42 for LSTM;R2 = 0.9, NSE = 0.9 and RMSE = 0.397 for GRU) and in validation (R2 = 0.865, NSE = 0.851, and RMSE = 0.329 for LSTM;R2 = 0.9, NSE = 0.865 and RMSE = 0.301 for GRU). This good performance of LSTM and GRU models confirms the importance of models based on machine learning in modeling hydrological phenomena for better decision-making.展开更多
The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose...The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose of the independent supervision function is to ensure that the system operates within the scope of procedures and manuals.At present,the function of independent supervision is a difficult and confusing issue for various original equipment manufacturers as well as suppliers,and there is an urgent requirement to put forward relevant requirements and form relevant methods.Based on the above mentioned objective,the basic requirements of the independent supervision function of design assurance system were studied,the problems and deficiencies in the organization,staffing,and methods existing in the current independent supervision function were analyzed,the improvement suggestions and measures for the performance of the independent supervision function from the aspects of the organization,staffing,procedures,and suppliers were put forward.The present work and conclusions provide guidance and direction for the effective operation of the design assurance system.展开更多
The purpose of this study was to explore the effects of supervised movie appreciation on improving the life meaning sense among college students. The intervention combined by “pre-video, post counseling” was conduct...The purpose of this study was to explore the effects of supervised movie appreciation on improving the life meaning sense among college students. The intervention combined by “pre-video, post counseling” was conducted on the experimental group, while the control group received no intervention. Results have shown that the scores on the subscales of will to meaning, life purpose, life control, suffer acceptance and on the total scale have improved significantly. No gender difference was found on the intervention effect, and participants receiving intervention maintained higher level on related subscales a week later, indicating that supervised movie appreciation is an effective way to improve the life meaning sense among college students.展开更多
Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features ma...Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. The conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. In this paper, we propose a new unsupervised quick reduct (QR) algorithm using rough set theory. The quality of the reduced data is measured by the classification performance and it is evaluated using WEKA classifier tool. The method is compared with existing supervised methods and the result demonstrates the efficiency of the proposed algorithm.展开更多
In the supervised classification process of remotely sensed imagery, the quantity of samples is one of the important factors affecting the accuracy of the image classification as well as the keys used to evaluate the ...In the supervised classification process of remotely sensed imagery, the quantity of samples is one of the important factors affecting the accuracy of the image classification as well as the keys used to evaluate the image classification. In general, the samples are acquired on the basis of prior knowledge, experience and higher resolution images. With the same size of samples and the same sampling model, several sets of training sample data can be obtained. In such sets, which set reflects perfect spectral characteristics and ensure the accuracy of the classification can be known only after the accuracy of the classification has been assessed. So, before classification, it would be a meaningful research to measure and assess the quality of samples for guiding and optimizing the consequent classification process. Then, based on the rough set, a new measuring index for the sample quality is proposed. The experiment data is the Landsat TM imagery of the Chinese Yellow River Delta on August 8th, 1999. The experiment compares the Bhattacharrya distance matrices and purity index zl and △x based on rough set theory of 5 sample data and also analyzes its effect on sample quality.展开更多
In the era of an energy revolution,grid decentralization has emerged as a viable solution to meet the increasing global energy demand by incorporating renewables at the distributed level.Microgrids are considered a dr...In the era of an energy revolution,grid decentralization has emerged as a viable solution to meet the increasing global energy demand by incorporating renewables at the distributed level.Microgrids are considered a driving component for accelerating grid decentralization.To optimally utilize the available resources and address potential challenges,there is a need to have an intelligent and reliable energy management system(EMS)for the microgrid.The artificial intelligence field has the potential to address the problems in EMS and can provide resilient,efficient,reliable,and scalable solutions.This paper presents an overview of existing conventional and AI-based techniques for energy management systems in microgrids.We analyze EMS methods for centralized,decentralized,and distributed microgrids separately.Then,we summarize machine learning techniques such as ANNs,federated learning,LSTMs,RNNs,and reinforcement learning for EMS objectives such as economic dispatch,optimal power flow,and scheduling.With the incorporation of AI,microgrids can achieve greater performance efficiency and more reliability for managing a large number of energy resources.However,challenges such as data privacy,security,scalability,explainability,etc.,need to be addressed.To conclude,the authors state the possible future research directions to explore AI-based EMS's potential in real-world applications.展开更多
This paper introduces the constitute,structure and the software model of a set of networked manufacturing process monitoring system,using JAVA network technique to realize a set of three layer distributed manufacturin...This paper introduces the constitute,structure and the software model of a set of networked manufacturing process monitoring system,using JAVA network technique to realize a set of three layer distributed manufacturing process monitoring sys- tem which is comprised with remote manage center,manufacturing process supervision center and the units of measure and control layer such as displacement sensor,the device of temperature measure and alarm etc.The network integration of the production management layer,the process control layer and the hard ware control layer is realized via using this approach.The design using object-oriented technique based on JAVA can easily transport to different operation systems with high performance of the expansibili- ty.展开更多
Railway real estate is the fundamental element of railway transportation production and operation.Effective management and rational utilization of railway real estate is essential for railway asset operation.Based on ...Railway real estate is the fundamental element of railway transportation production and operation.Effective management and rational utilization of railway real estate is essential for railway asset operation.Based on the investigation of the requirements of railway real estate management and operation,combined with Beidou positioning,GIS(Geographic Information System),multi-source data fusion and other cutting-edge technologies,this paper puts forward the multi-dimensional dynamic statistical method of real estate information,the identification method of railway land occupation and the comprehensive evaluation method of real estate development and utilization potential,and build the railway real estate supervision and operation platform,design the function of the platform,so as to provide intelligent solutions for the railway real estate operation.展开更多
Several typical supervised clustering methods such as Gaussian mixture model-based supervised clustering (GMM), k- nearest-neighbor (KNN), binary support vector machines (SVMs) and multiclass support vector mach...Several typical supervised clustering methods such as Gaussian mixture model-based supervised clustering (GMM), k- nearest-neighbor (KNN), binary support vector machines (SVMs) and multiclass support vector machines (MC-SVMs) were employed to classify the computer simulation data and two real microarray expression datasets. False positive, false negative, true positive, true negative, clustering accuracy and Matthews' correlation coefficient (MCC) were compared among these methods. The results are as follows: (1) In classifying thousands of gene expression data, the performances of two GMM methods have the maximal clustering accuracy and the least overall FP+FN error numbers on the basis of the assumption that the whole set of microarray data are a finite mixture of multivariate Gaussian distributions. Furthermore, when the number of training sample is very small, the clustering accuracy of GMM-Ⅱ method has superiority over GMM- Ⅰ method. (2) In general, the superior classification performance of the MC-SVMs are more robust and more practical, which are less sensitive to the curse of dimensionality, and not only next to GMM method in clustering accuracy to thousands of gene expression data, but also more robust to a small number of high-dimensional gene expression samples than other techniques. (3) Of the MC-SVMs, OVO and DAGSVM perform better on the large sample sizes, whereas five MC-SVMs methods have very similar performance on moderate sample sizes. In other cases, OVR, WW and CS yield better results when sample sizes are small. So, it is recommended that at least two candidate methods, choosing on the basis of the real data features and experimental conditions, should be performed and compared to obtain better clustering result.展开更多
We have presented an integrated approach based on supervised and unsupervised learning tech- nique to improve the accuracy of six predictive models. They are developed to predict outcome of tuberculosis treatment cour...We have presented an integrated approach based on supervised and unsupervised learning tech- nique to improve the accuracy of six predictive models. They are developed to predict outcome of tuberculosis treatment course and their accuracy needs to be improved as they are not precise as much as necessary. The integrated supervised and unsupervised learning method (ISULM) has been proposed as a new way to improve model accuracy. The dataset of 6450 Iranian TB patients under DOTS therapy was applied to initially select the significant predictors and then develop six predictive models using decision tree, Bayesian network, logistic regression, multilayer perceptron, radial basis function, and support vector machine algorithms. Developed models have integrated with k-mean clustering analysis to calculate more accurate predicted outcome of tuberculosis treatment course. Obtained results, then, have been evaluated to compare prediction accuracy before and after ISULM application. Recall, Precision, F-measure, and ROC area are other criteria used to assess the models validity as well as change percentage to show how different are models before and after ISULM. ISULM led to improve the prediction accuracy for all applied classifiers ranging between 4% and 10%. The most and least improvement for prediction accuracy were shown by logistic regression and support vector machine respectively. Pre-learning by k- mean clustering to relocate the objects and put similar cases in the same group can improve the classification accuracy in the process of integrating supervised and unsupervised learning.展开更多
In the year 1994, China’s new policies and measures for taxation, finance, invcstment and foreign system reform came into being respectively and enjoyed steady progress. At an international meeting not long ago, Vice...In the year 1994, China’s new policies and measures for taxation, finance, invcstment and foreign system reform came into being respectively and enjoyed steady progress. At an international meeting not long ago, Vice-Governor Zhou Zhenqin of the People’s Bank of China talked about the targets, measures and headway for China’s financial system reform to domestic and forcign people from economic circles who attended the meeting. When talking about the financial reform carried out this year, he focused on the introduction of the following展开更多
文摘Coronavirus has infected more than 753 million people,ranging in severity from one person to another,where more than six million infected people died worldwide.Computer-aided diagnostic(CAD)with artificial intelligence(AI)showed outstanding performance in effectively diagnosing this virus in real-time.Computed tomography is a complementary diagnostic tool to clarify the damage of COVID-19 in the lungs even before symptoms appear in patients.This paper conducts a systematic literature review of deep learning methods for classifying the segmentation of COVID-19 infection in the lungs.We used the methodology of systematic reviews and meta-analyses(PRISMA)flow method.This research aims to systematically analyze the supervised deep learning methods,open resource datasets,data augmentation methods,and loss functions used for various segment shapes of COVID-19 infection from computerized tomography(CT)chest images.We have selected 56 primary studies relevant to the topic of the paper.We have compared different aspects of the algorithms used to segment infected areas in the CT images.Limitations to deep learning in the segmentation of infected areas still need to be developed to predict smaller regions of infection at the beginning of their appearance.
文摘In recent years, the place occupied by the various manifestations of cyber-crime in companies has been considerable. Indeed, due to the rapid evolution of telecommunications technologies, companies, regardless of their size or sector of activity, are now the target of advanced persistent threats. The Work 2035 study also revealed that cyber crimes (such as critical infrastructure hacks) and massive data breaches are major sources of concern. Thus, it is important for organizations to guarantee a minimum level of security to avoid potential attacks that can cause paralysis of systems, loss of sensitive data, exposure to blackmail, damage to reputation or even a commercial harm. To do this, among other means, hardening is used, the main objective of which is to reduce the attack surface within a company. The execution of the hardening configurations as well as the verification of these are carried out on the servers and network equipment with the aim of reducing the number of openings present by keeping only those which are necessary for proper operation. However, nowadays, in many companies, these tasks are done manually. As a result, the execution and verification of hardening configurations are very often subject to potential errors but also highly consuming human and financial resources. The problem is that it is essential for operators to maintain an optimal level of security while minimizing costs, hence the interest in automating hardening processes and verifying the hardening of servers and network equipment. It is in this logic that we propose within the framework of this work the reinforcement of the security of the information systems (IS) by the automation of the mechanisms of hardening. In our work, we have, on the one hand, set up a hardening procedure in accordance with international security standards for servers, routers and switches and, on the other hand, designed and produced a functional application which makes it possible to: 1) Realise the configuration of the hardening;2) Verify them;3) Correct the non conformities;4) Write and send by mail a verification report for the configurations;5) And finally update the procedures of hardening. Our web application thus created allows in less than fifteen (15) minutes actions that previously took at least five (5) hours of time. This allows supervised network operators to save time and money, but also to improve their security standards in line with international standards.
文摘Nowadays, in data science, supervised learning algorithms are frequently used to perform text classification. However, African textual data, in general, have been studied very little using these methods. This article notes the particularity of the data and measures the level of precision of predictions of naive Bayes algorithms, decision tree, and SVM (Support Vector Machine) on a corpus of computer jobs taken on the internet. This is due to the data imbalance problem in machine learning. However, this problem essentially focuses on the distribution of the number of documents in each class or subclass. Here, we delve deeper into the problem to the word count distribution in a set of documents. The results are compared with those obtained on a set of French IT offers. It appears that the precision of the classification varies between 88% and 90% for French offers against 67%, at most, for Cameroonian offers. The contribution of this study is twofold. Indeed, it clearly shows that, in a similar job category, job offers on the internet in Cameroon are more unstructured compared to those available in France, for example. Moreover, it makes it possible to emit a strong hypothesis according to which sets of texts having a symmetrical distribution of the number of words obtain better results with supervised learning algorithms.
基金the National Natural Science Foundation of China(42001408,61806097).
文摘Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
文摘Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.
文摘Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.
文摘The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.
文摘As educational reforms intensify and societal emphasis shifts towards empowerment,the traditional discourse paradigm of management and control in educational supervision faces growing challenges.This paper explores the transformation of this discourse paradigm through the lens of empowerment,analyzing its distinct characteristics,potential pathways,and effective strategies.This paper begins by reviewing the concept of empowerment and examining the current research landscape surrounding the discourse paradigm in educational supervision.Subsequently,we conduct a comparative analysis of the“control”and“empowerment”paradigms,highlighting their essential differences.This analysis illuminates the key characteristics of an empowerment-oriented approach to educational supervision,particularly its emphasis on dialogue,collaboration,participation,and,crucially,empowerment itself.Ultimately,this research advocates for a shift in educational supervision towards an empowerment-oriented discourse system.This entails a multi-pronged approach:transforming ingrained beliefs,embracing renewed pedagogical concepts,fostering methodological innovation,and optimizing existing mechanisms and strategies within educational supervision.These changes are proposed to facilitate the more effective alignment of educational supervision with the pursuit of high-quality education.
文摘The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model.
文摘Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural networks for rainfall-runoff modeling in the Zou River basin at Atchérigbé outlet. To this end, we used daily precipitation data over the period 1988-2010 as input of the models, such as the Long Short-Term Memory (LSTM) and Recurrent Gate Networks (GRU) to simulate river discharge in the study area. The investigated models give good results in calibration (R2 = 0.888, NSE = 0.886, and RMSE = 0.42 for LSTM;R2 = 0.9, NSE = 0.9 and RMSE = 0.397 for GRU) and in validation (R2 = 0.865, NSE = 0.851, and RMSE = 0.329 for LSTM;R2 = 0.9, NSE = 0.865 and RMSE = 0.301 for GRU). This good performance of LSTM and GRU models confirms the importance of models based on machine learning in modeling hydrological phenomena for better decision-making.
文摘The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose of the independent supervision function is to ensure that the system operates within the scope of procedures and manuals.At present,the function of independent supervision is a difficult and confusing issue for various original equipment manufacturers as well as suppliers,and there is an urgent requirement to put forward relevant requirements and form relevant methods.Based on the above mentioned objective,the basic requirements of the independent supervision function of design assurance system were studied,the problems and deficiencies in the organization,staffing,and methods existing in the current independent supervision function were analyzed,the improvement suggestions and measures for the performance of the independent supervision function from the aspects of the organization,staffing,procedures,and suppliers were put forward.The present work and conclusions provide guidance and direction for the effective operation of the design assurance system.
文摘The purpose of this study was to explore the effects of supervised movie appreciation on improving the life meaning sense among college students. The intervention combined by “pre-video, post counseling” was conducted on the experimental group, while the control group received no intervention. Results have shown that the scores on the subscales of will to meaning, life purpose, life control, suffer acceptance and on the total scale have improved significantly. No gender difference was found on the intervention effect, and participants receiving intervention maintained higher level on related subscales a week later, indicating that supervised movie appreciation is an effective way to improve the life meaning sense among college students.
基金supported by the UGC, SERO, Hyderabad under FDP during XI plan periodthe UGC, New Delhi for financial assistance under major research project Grant No. F-34-105/2008
文摘Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. The conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. In this paper, we propose a new unsupervised quick reduct (QR) algorithm using rough set theory. The quality of the reduced data is measured by the classification performance and it is evaluated using WEKA classifier tool. The method is compared with existing supervised methods and the result demonstrates the efficiency of the proposed algorithm.
基金Supported in part by the National Natural Science Foundation of China (No.40671136), Open Research Fund from State Key Laboratory of Remote Sensing Science (No.LRSS0610) and the National 863 Program of China (No. 2006AA12Z215).
文摘In the supervised classification process of remotely sensed imagery, the quantity of samples is one of the important factors affecting the accuracy of the image classification as well as the keys used to evaluate the image classification. In general, the samples are acquired on the basis of prior knowledge, experience and higher resolution images. With the same size of samples and the same sampling model, several sets of training sample data can be obtained. In such sets, which set reflects perfect spectral characteristics and ensure the accuracy of the classification can be known only after the accuracy of the classification has been assessed. So, before classification, it would be a meaningful research to measure and assess the quality of samples for guiding and optimizing the consequent classification process. Then, based on the rough set, a new measuring index for the sample quality is proposed. The experiment data is the Landsat TM imagery of the Chinese Yellow River Delta on August 8th, 1999. The experiment compares the Bhattacharrya distance matrices and purity index zl and △x based on rough set theory of 5 sample data and also analyzes its effect on sample quality.
文摘In the era of an energy revolution,grid decentralization has emerged as a viable solution to meet the increasing global energy demand by incorporating renewables at the distributed level.Microgrids are considered a driving component for accelerating grid decentralization.To optimally utilize the available resources and address potential challenges,there is a need to have an intelligent and reliable energy management system(EMS)for the microgrid.The artificial intelligence field has the potential to address the problems in EMS and can provide resilient,efficient,reliable,and scalable solutions.This paper presents an overview of existing conventional and AI-based techniques for energy management systems in microgrids.We analyze EMS methods for centralized,decentralized,and distributed microgrids separately.Then,we summarize machine learning techniques such as ANNs,federated learning,LSTMs,RNNs,and reinforcement learning for EMS objectives such as economic dispatch,optimal power flow,and scheduling.With the incorporation of AI,microgrids can achieve greater performance efficiency and more reliability for managing a large number of energy resources.However,challenges such as data privacy,security,scalability,explainability,etc.,need to be addressed.To conclude,the authors state the possible future research directions to explore AI-based EMS's potential in real-world applications.
基金Funded by National Natural Science Foundation of China under the Grant # 50175066the Natural Science Foundation of Shandong province under the Grant # Y2005F12.
文摘This paper introduces the constitute,structure and the software model of a set of networked manufacturing process monitoring system,using JAVA network technique to realize a set of three layer distributed manufacturing process monitoring sys- tem which is comprised with remote manage center,manufacturing process supervision center and the units of measure and control layer such as displacement sensor,the device of temperature measure and alarm etc.The network integration of the production management layer,the process control layer and the hard ware control layer is realized via using this approach.The design using object-oriented technique based on JAVA can easily transport to different operation systems with high performance of the expansibili- ty.
基金supported by the Scientific and Technological Research and Development Plan of China Railway Beijing Group Co.,Ltd.(2022CT01).
文摘Railway real estate is the fundamental element of railway transportation production and operation.Effective management and rational utilization of railway real estate is essential for railway asset operation.Based on the investigation of the requirements of railway real estate management and operation,combined with Beidou positioning,GIS(Geographic Information System),multi-source data fusion and other cutting-edge technologies,this paper puts forward the multi-dimensional dynamic statistical method of real estate information,the identification method of railway land occupation and the comprehensive evaluation method of real estate development and utilization potential,and build the railway real estate supervision and operation platform,design the function of the platform,so as to provide intelligent solutions for the railway real estate operation.
基金This research was supported by the National Natural Science Foundation of China(30370758)Program for New Century Excellent Talents in Universities(NCET)of Ministry of Education to Dr.Xu Chenwu(NCET-05-0502).
文摘Several typical supervised clustering methods such as Gaussian mixture model-based supervised clustering (GMM), k- nearest-neighbor (KNN), binary support vector machines (SVMs) and multiclass support vector machines (MC-SVMs) were employed to classify the computer simulation data and two real microarray expression datasets. False positive, false negative, true positive, true negative, clustering accuracy and Matthews' correlation coefficient (MCC) were compared among these methods. The results are as follows: (1) In classifying thousands of gene expression data, the performances of two GMM methods have the maximal clustering accuracy and the least overall FP+FN error numbers on the basis of the assumption that the whole set of microarray data are a finite mixture of multivariate Gaussian distributions. Furthermore, when the number of training sample is very small, the clustering accuracy of GMM-Ⅱ method has superiority over GMM- Ⅰ method. (2) In general, the superior classification performance of the MC-SVMs are more robust and more practical, which are less sensitive to the curse of dimensionality, and not only next to GMM method in clustering accuracy to thousands of gene expression data, but also more robust to a small number of high-dimensional gene expression samples than other techniques. (3) Of the MC-SVMs, OVO and DAGSVM perform better on the large sample sizes, whereas five MC-SVMs methods have very similar performance on moderate sample sizes. In other cases, OVR, WW and CS yield better results when sample sizes are small. So, it is recommended that at least two candidate methods, choosing on the basis of the real data features and experimental conditions, should be performed and compared to obtain better clustering result.
文摘We have presented an integrated approach based on supervised and unsupervised learning tech- nique to improve the accuracy of six predictive models. They are developed to predict outcome of tuberculosis treatment course and their accuracy needs to be improved as they are not precise as much as necessary. The integrated supervised and unsupervised learning method (ISULM) has been proposed as a new way to improve model accuracy. The dataset of 6450 Iranian TB patients under DOTS therapy was applied to initially select the significant predictors and then develop six predictive models using decision tree, Bayesian network, logistic regression, multilayer perceptron, radial basis function, and support vector machine algorithms. Developed models have integrated with k-mean clustering analysis to calculate more accurate predicted outcome of tuberculosis treatment course. Obtained results, then, have been evaluated to compare prediction accuracy before and after ISULM application. Recall, Precision, F-measure, and ROC area are other criteria used to assess the models validity as well as change percentage to show how different are models before and after ISULM. ISULM led to improve the prediction accuracy for all applied classifiers ranging between 4% and 10%. The most and least improvement for prediction accuracy were shown by logistic regression and support vector machine respectively. Pre-learning by k- mean clustering to relocate the objects and put similar cases in the same group can improve the classification accuracy in the process of integrating supervised and unsupervised learning.
文摘In the year 1994, China’s new policies and measures for taxation, finance, invcstment and foreign system reform came into being respectively and enjoyed steady progress. At an international meeting not long ago, Vice-Governor Zhou Zhenqin of the People’s Bank of China talked about the targets, measures and headway for China’s financial system reform to domestic and forcign people from economic circles who attended the meeting. When talking about the financial reform carried out this year, he focused on the introduction of the following