期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of supply air temperature and inlet location on particle dispersion in displacement ventilation rooms 被引量:5
1
作者 Yanming Kang Youjun Wang Ke Zhong 《Particuology》 SCIE EI CAS CSCD 2011年第6期619-625,共7页
The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature. T... The effects of supply temperature and vertical location of inlet air on particle dispersion in a displacement ventilated (DV) room were numerically modeled with validation by experimental data from the literature. The results indicate that the temperature and vertical location of inlet supply air did not greatly affect the air distribution in the upper parts of a DV room, but could significantly influence the airflow pattern in the lower parts of the room, thus affecting the indoor air quality with contaminant sources located at the lower level, such as particles from working activities in an office. The numerical results also show that the inlet location would slightly influence the relative ventilation efficiency for the same air supply volume, but particle concentration in the breathing zone would be slightly lower with a low horizontal wall slot than a rectangular diffuser. Comparison of the results for two different supply temperatures in a DV room shows that, although lower supply temperature means less incoming air volume, since the indoor flow is mainly driven by buoyancy, lower supply temperature air could more efficiently remove passive sources (such as particles released from work activities in an office). However, in the breathing zone it gives higher concentration as compared to higher supply air temperature. To obtain good indoor air quality, low supply air temperature should be avoided because concentration in the breathing zone has a stronger and more direct impact on human health. 展开更多
关键词 Displacement ventilation Particle dispersion Numerical simulation supply air temperature Inlet location
原文传递
Determination of Effectiveness of Energy Management System in Buildings
2
作者 Vivash Karki Roseline Mostafa +1 位作者 Bhaskaran Gopalakrishnan Derek R.Johnson 《Energy Engineering》 EI 2023年第2期561-586,共26页
Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effective... Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system. 展开更多
关键词 BUILDINGS energy management system demand controlled ventilation supply air temperature reset temperature setback control monte carlo simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部