As the preferred nitrogen(N)source,ammonium(NH_(4)^(+))contributes to plant growth and development and fruit quality.In plants,NH 4+uptake is facilitated by a family of NH_(4)^(+) transporters(AMT).However,the molecul...As the preferred nitrogen(N)source,ammonium(NH_(4)^(+))contributes to plant growth and development and fruit quality.In plants,NH 4+uptake is facilitated by a family of NH_(4)^(+) transporters(AMT).However,the molecular mechanisms and functional characteristics of the AMT genes in peach have not been mentioned yet.In this present study,excess NH_(4)^(+) stress severely hindered shoot growth and root elongation,accompanied with reduced mineral accumulation,decreased leaf chlorophyll concentration,and stunned photosynthetic performance.In addition,we identified 14 putative AMT genes in peach(PpeAMT).Expression analysis showed that PpeAMT genes were differently expressed in peach leaves,stems and roots,and were distinctly regulated by external NH_(4)^(+) supplies.Putative cis-elements involved in abiotic stress adaption,Ca^(2+) response,light and circadian rhythms regulation,and seed development were observed in the promoters of the PpeAMT family genes.Phosphorylation analysis of residues within the C-terminal of PpeAMT proteins revealed many conserved phosphorylation residues in both the AMT1 and AMT2 subfamily members,which could potentially play roles in controlling the NH 4+transport activities.This study provides gene resources to study the biological function of AMT proteins in peach,and reveals molecular basis for NH_(4)^(+) uptake and N nutrition mechanisms of fruit trees.展开更多
This paper studies the effects of government land regulations(GLR)on housing supply elasticity in urban China.We first extend the theoretical framework of Saiz(2010),then use land transaction microdata,satellite-gener...This paper studies the effects of government land regulations(GLR)on housing supply elasticity in urban China.We first extend the theoretical framework of Saiz(2010),then use land transaction microdata,satellite-generated data,and the construction of instrumental variables to analyze the marginal effect of GLR,and finally calculate the housing supply elasticity caused by GLR.Our analysis finds that GLR is an important reason for the overall inelasticity of housing supply in 272 Chinese cities,which reduces housing supply elasticity from 1.457(elastic)to 0.872(inelastic).Housing supply elasticity caused by GLR has declined the most in first-tier cities and the eastern regions.The marginal effect of land use regulation is greater than that of land allocation and supp!y regulations.The initial development level and natural geographic constraint of each city also matter in China's housing supply market.展开更多
This paper describes a ring oscillator based low jitter charge pump PLL with supply regulation and digital calibration. In order to combat power supply noise, a low drop output voltage regulator is implemented. The VC...This paper describes a ring oscillator based low jitter charge pump PLL with supply regulation and digital calibration. In order to combat power supply noise, a low drop output voltage regulator is implemented. The VCO gain is tunable by using the 4 bit control self-calibration technique. So that the optimal VCO gain is automatically selected and the process/temperature variation is compensated. Fabricated in the 0.13 μm CMOS process, the PLL achieves a frequency range of 100--400 MHz and occupies a 190 × 200 μm2 area. The measured RMS jitter is 5.36 ps at a 400 MHz operating frequency.展开更多
Conventional control systems used for regulated power supplies,including the proportional integral and derivation(PID)controller,have some serious disadvantages.The PID controller has a delayed feedback associated wit...Conventional control systems used for regulated power supplies,including the proportional integral and derivation(PID)controller,have some serious disadvantages.The PID controller has a delayed feedback associated with the control action and requires a lot of mathematical derivations.This paper presents a novel controlling system based on the artificial neural network(ANN),which can be used to regulate the output voltage of the DC power supply.Using MATLABTM,the designed control system was tested and analyzed with two types of back-propagation algorithms.This paper presents the results of the simulation that includes sum-squared error(SSE)and mean-squared error(MSE),and gives a detailed comparison of these values for the two algorithms.Hardware verification of the new system,using RS232 interface and Microsoft Visual Basic 6.0,was implemented,showing very good consistency with the simulation results.The proposed control system,compared to PID and other conventional controllers,requires less mathematical derivation in design and it is easier to implement.展开更多
基金This work was supported by the National Key R&D Program of China(2019YFD1000500,2016YFD0600106)China Agriculture Research System(CARS-29-16),the Agricultural Variety Improvement Project of Shandong Province(2019LZGC009)the Key R&D Program of Shandong Province(GG201809260221,2019GSF1070952,018JHZ006).
文摘As the preferred nitrogen(N)source,ammonium(NH_(4)^(+))contributes to plant growth and development and fruit quality.In plants,NH 4+uptake is facilitated by a family of NH_(4)^(+) transporters(AMT).However,the molecular mechanisms and functional characteristics of the AMT genes in peach have not been mentioned yet.In this present study,excess NH_(4)^(+) stress severely hindered shoot growth and root elongation,accompanied with reduced mineral accumulation,decreased leaf chlorophyll concentration,and stunned photosynthetic performance.In addition,we identified 14 putative AMT genes in peach(PpeAMT).Expression analysis showed that PpeAMT genes were differently expressed in peach leaves,stems and roots,and were distinctly regulated by external NH_(4)^(+) supplies.Putative cis-elements involved in abiotic stress adaption,Ca^(2+) response,light and circadian rhythms regulation,and seed development were observed in the promoters of the PpeAMT family genes.Phosphorylation analysis of residues within the C-terminal of PpeAMT proteins revealed many conserved phosphorylation residues in both the AMT1 and AMT2 subfamily members,which could potentially play roles in controlling the NH 4+transport activities.This study provides gene resources to study the biological function of AMT proteins in peach,and reveals molecular basis for NH_(4)^(+) uptake and N nutrition mechanisms of fruit trees.
文摘This paper studies the effects of government land regulations(GLR)on housing supply elasticity in urban China.We first extend the theoretical framework of Saiz(2010),then use land transaction microdata,satellite-generated data,and the construction of instrumental variables to analyze the marginal effect of GLR,and finally calculate the housing supply elasticity caused by GLR.Our analysis finds that GLR is an important reason for the overall inelasticity of housing supply in 272 Chinese cities,which reduces housing supply elasticity from 1.457(elastic)to 0.872(inelastic).Housing supply elasticity caused by GLR has declined the most in first-tier cities and the eastern regions.The marginal effect of land use regulation is greater than that of land allocation and supp!y regulations.The initial development level and natural geographic constraint of each city also matter in China's housing supply market.
基金supported by the National Key Basic Research and Development Program of China(No.2015CB352100)
文摘This paper describes a ring oscillator based low jitter charge pump PLL with supply regulation and digital calibration. In order to combat power supply noise, a low drop output voltage regulator is implemented. The VCO gain is tunable by using the 4 bit control self-calibration technique. So that the optimal VCO gain is automatically selected and the process/temperature variation is compensated. Fabricated in the 0.13 μm CMOS process, the PLL achieves a frequency range of 100--400 MHz and occupies a 190 × 200 μm2 area. The measured RMS jitter is 5.36 ps at a 400 MHz operating frequency.
文摘Conventional control systems used for regulated power supplies,including the proportional integral and derivation(PID)controller,have some serious disadvantages.The PID controller has a delayed feedback associated with the control action and requires a lot of mathematical derivations.This paper presents a novel controlling system based on the artificial neural network(ANN),which can be used to regulate the output voltage of the DC power supply.Using MATLABTM,the designed control system was tested and analyzed with two types of back-propagation algorithms.This paper presents the results of the simulation that includes sum-squared error(SSE)and mean-squared error(MSE),and gives a detailed comparison of these values for the two algorithms.Hardware verification of the new system,using RS232 interface and Microsoft Visual Basic 6.0,was implemented,showing very good consistency with the simulation results.The proposed control system,compared to PID and other conventional controllers,requires less mathematical derivation in design and it is easier to implement.