期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Exploration on the Metadata Model of the SOA-based Adaptive Learning Support System
1
作者 Tao LIU 《International Journal of Technology Management》 2014年第12期113-115,共3页
There are differences between the different individuals of learning. Adaptive learning support system is a learning system, which provides the learning supports suitable for the characteristics of the individuals acco... There are differences between the different individuals of learning. Adaptive learning support system is a learning system, which provides the learning supports suitable for the characteristics of the individuals according to the differences in the learning of individuals. In this paper, through the analysis on the adaptive learning support system, a system framework based on SOA is proposed and the research methods of the metadata model are emphatically discussed. 展开更多
关键词 Adaptive Leaming support System METADATA SOA
下载PDF
Soft measurement for component content based on adaptive model of Pr/Nd color features 被引量:5
2
作者 陆荣秀 杨辉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1981-1986,共6页
For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fas... For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction. 展开更多
关键词 Pr/Nd extraction Color feature Component content Adaptive iterative least squares support vector machine Real-time correction
下载PDF
A COMPARATIVE STUDY OF DATA MINING METHODS IN CONSUMER LOANS CREDIT SCORING MANAGEMENT
3
作者 Wenbing XIAO Qian ZHAO Qi FEI 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2006年第4期419-435,共17页
Credit scoring has become a critical and challenging management science issue as the credit industry has been facing stiffer competition in recent years. Many classification methods have been suggested to tackle this ... Credit scoring has become a critical and challenging management science issue as the credit industry has been facing stiffer competition in recent years. Many classification methods have been suggested to tackle this problem in the literature. In this paper, we investigate the performance of various credit scoring models and the corresponding credit risk cost for three real-life credit scoring data sets. Besides the well-known classification algorithms (e.g. linear discriminant analysis, logistic regression, neural networks and k-nearest neighbor), we also investigate the suitability and performance of some recently proposed, advanced data mining techniques such as support vector machines (SVMs), classification and regression tree (CART), and multivariate adaptive regression splines (MARS). The performance is assessed by using the classification accuracy and cost of credit scoring errors. The experiment results show that SVM, MARS, logistic regression and neural networks yield a very good performance. However, CART and MARS's explanatory capability outperforms the other methods. 展开更多
关键词 Data mining credit scoring classification and regression tree support vector machines multivariate adaptive regression splines credit-risk evaluation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部