Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth th...Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of uncon- strained SVMs. The three-order piecewise smooth support vector machine (TPWSSVMd) is proposed. The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d. The global convergence proof of TPWSSVMd is given with the rough set theory. TPWSSVMd can efficiently handle large scale and high dimensional problems. Nu- merical results demonstrate TPWSSVMa has better classification performance and learning efficiency than other competitive base- lines.展开更多
基金supported by the National Natural Science Foundation of China(6110016561100231+6 种基金5120530961472307)the Natural Science Foundation of Shaanxi Province(2012JQ80442014JM83132010JQ8004)the Foundation of Education Department of Shaanxi Province(2013JK1096)the New Star Team of Xi’an University of Posts and Telecommunications
文摘Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of uncon- strained SVMs. The three-order piecewise smooth support vector machine (TPWSSVMd) is proposed. The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d. The global convergence proof of TPWSSVMd is given with the rough set theory. TPWSSVMd can efficiently handle large scale and high dimensional problems. Nu- merical results demonstrate TPWSSVMa has better classification performance and learning efficiency than other competitive base- lines.
基金Projects(52074298,51904207)supported by the National Natural Science Foundation of ChinaProject(8232056)supported by the Natural Science Foundation of Beijing Municipality,China+1 种基金Project(2022XDHZ12)supported by the Liulin Energy and Environment Academician Workstation,ChinaProject([2020]3008J)supported by the Science and Technology Programs in Guizhou Province,China。