To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb...To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.展开更多
Metal nanoaggregates can simultaneously enhance the activity and stability of Fe-N-C catalysts in proton-exchange-membrane fuel cells(PEMFC).Previous studies on the relevant mechanism have focused on the direct intera...Metal nanoaggregates can simultaneously enhance the activity and stability of Fe-N-C catalysts in proton-exchange-membrane fuel cells(PEMFC).Previous studies on the relevant mechanism have focused on the direct interaction between FeN_(4)active sites and metal nanoaggregates.However,the role of carbon support that hosts metal nanoaggregates and active sites has been overlooked.Here,a Fe-N-C catalyst encapsulating inactive gold nanoparticles is prepared as a model catalyst to investigate the electronic tuning of Au nanoparticles(NPs)towards the carbon support.Au NPs donate electrons to carbon support,making it rich inπelectrons,which reduces the work function and regulates the electronic configuration of the FeN_(4)sites for an enhanced ORR activity.Meanwhile,the electron-rich carbon support can mitigate the electron depletion of FeN_(4)sites caused by carbon support oxidation,thereby preserving its high activity.The yield and accumulation of H_(2)O_(2)are thus alleviated,which delays the oxidation of the catalyst and benefits the stability.Due to the electron-rich carbon support,the composite catalyst achieves a top-level peak power density of 0.74 W/cm^(2) in a 1.5 bar H_(2)-air PEMFC,as well as the improved stability.This work elucidates the key role of carbon support in the performance enhancement of the FeN-C/metal nanoaggregate composite catalysts for fuel cell application.展开更多
Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we ut...Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures.展开更多
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile...Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.展开更多
AIM: To establish a method detecting porcine endogenous retrovirus (PERV) in China experimental minipigs and to evaluate the safety of PERV in three individuals treated with bioartificial liver support systems base...AIM: To establish a method detecting porcine endogenous retrovirus (PERV) in China experimental minipigs and to evaluate the safety of PERV in three individuals treated with bioartificial liver support systems based on porcine hepatocytes. METHODS: Porcine hepatocytes were isolated with two-stage perfusion method, then cultured in the bioreactor, which is separated by a semipermeable membrane (0.2μm) from the lumen through which the patients' blood plasma was circulated. After posthemoperfusion, patients' blood was obtained for screening. Additionally, samples of medium collected from both intraluminal and extraluminal compartments of the laboratory bioreactor and culture supernate in vitro was analyzed. The presence of viral sequences was estimated by polymerase chain reaction (PCR) and reverse transcriptase-polymerase chain reaction (RTPCR). Finally, the infection of virus in the supernate of common culture was ascertained by exposure to the fetal liver cells. RESULTS: PERV-specific gag sequences were found in the porcine hepatocytes using RT-PCR. and were detected in all samples from the intraluminal, extraluminal samples and culture supernate. However, culture supernatant from primary porcine hepatocytes (cleared of cellular debris) failed to infect human fetal liver cells. Finally, RT-PCR detected no PERV infection was found in the blood samples obtained from three patients at various times post-hemoperfusion. CONCLUSION: The assays used are specific and sensitive, identified by second PCR. PERVs could be released from hepatocytes cultured in bioreactor without the stimulation of mitogen and could not be prevented by the hollow fiber semipermeable membrane, indicating the existence of PERV safety in extracorporeal bioartificial liver support system (EBLSS).展开更多
The electrochemical hydrogen evolution reaction(HER) on a non-precious electrocatalyst in an alkaline environment is of essential importance for future renewable energy. The design of advanced electrocatalysts for H...The electrochemical hydrogen evolution reaction(HER) on a non-precious electrocatalyst in an alkaline environment is of essential importance for future renewable energy. The design of advanced electrocatalysts for HER is the most important part to reduce the cost and to enhance the efficiency of water splitting. MoSis considered as one of the most promising electrocatalysts to replace the precious Pt catalyst.Herein, for the first time, we have successfully loaded MoSelectrocatalysts onto the CoOnanosheet array to catalyze HER with a low onset potential of6 mV. The high hydrogen evolution activity of MoSsupported on the CoOnanosheet array may be attributed to the increased active sites and the electronic interactions between MoSand CoO.展开更多
The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemical...The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization.展开更多
The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of ...The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of support doping and bimetallic alloying on the catalytic performance of Pt/Ce O_(2)-based nanocatalysts in water gas shift reaction was reported in this work.Various lanthanide ions and 3d transition metals were respectively introduced into the Ce O_(2)support or Pt to form Pt/Ce O_(2):Ln(Ln=La,Nd,Gd,Tb,Yb)and Pt M/Ce O_(2)(M=Fe,Co,Ni)nanocatalysts.The sample of Pt/Ce O_(2):Tb showed the highest activity(TOF at 200℃=0.051 s^(-1))among the Pt/Ce O_(2):Ln and the undoped Pt/Ce O_(2)catalysts.Besides,the sample of Pt Fe/Ce O_(2)exhibited the highest activity(TOF at 200℃=0.12 s^(-1))among Pt M/Ce O_(2)catalysts.The results of the multiple characterizations indicated that the catalytic activity of Pt/Ce O_(2):Ln catalysts was closely correlated with the amount of oxygen vacancies in doped ceria support.However,the different activity of Pt M/Ce O_(2)bimetallic catalysts was owing to the various Pt oxidation states of the bimetals dispersed on ceria.The study of the reaction pathway indicated that both the samples of Pt/Ce O_(2)and Pt/Ce O_(2):Tb catalyzed the reaction through the formate pathway,and the enhanced activity of the latter derived from the increased concentration of oxygen vacancies along with promoted water dissociation.As for the sample of Pt Fe/Ce O_(2),its catalytic mechanism was the carboxyl route with a higher reaction rate due to the moderate valence of Pt along with improved CO activation.展开更多
Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered b...Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered by the absence of inexpensive high-performance electrocatalysts for the hydrogen evolution reaction (HER).Re-based HER electrocatalysts exhibit predictable high performance within the entire pH range but suffer from arduous formation (i.e.,vulnerability to oxidation) and uncontrollable aggregation,which strongly discourages the maximisation of active site exposure required for activity enhancement.To overcome these limitations,we herein hydrothermally synthesise Re nanoclusters uniformly distributed on nanosheet supports,such as reduced graphene oxide nanosheets (Re NCs@rGO),revealing that this hybrid features abundant exposed active sites and high oxidation resistance.The obtained electrocatalysts were elaborately characterized by microscopic and spectroscopic analyses.Also,density functional theory calculations confirm the optimised synthesis of Re NCs@rGO and indicate the crucial role of Re–O–C junction formation in securing durability.The effective suppression of Re nanocluster detachment/dissolution under HER conditions endows Re NCs@rGO with high electron conductivity and electrochemical stability,resulting in a durability superior to that of commercial Pt/C and an activity similar to that of this reference.As a result,Re NCs@rGO exhibited remarkably small HER overpotentials of 110,130,and 93 m V to deliver a current density of 10 mA cm^(-2) in 0.5 M H_(2)SO_(4),1 M PBS,and 1 M KOH,respectively.Thus,Re NCs@rGO is a promising alternative to conventional Pt-group-metal catalysts and should find applications in next-generation high-performance water splitting systems.展开更多
Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-...Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.展开更多
With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is as...With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is ascribed to the bridged CO on metallic gold (2085 cm -1 ). CO pulse reaction showed that Au/Fe 2O 3 catalyst had a room temperature activity even in the presence of moisture. The produced CO 2 was detained and more easily desorbed from supported gold catalyst than support oxide. TPD IDT results indicated that the O - 2 superoxide ions are the possible active oxygen species.展开更多
The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides wi...The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions,in gas and liquid phase reactions.In the present review,we discuss the recent development of heterogeneous,supported monometallic gold catalysts for organic transformations emphasizing mainly liquid phase hydrogenation reactions.Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out.Applications of heterogeneous,supported monometallic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.展开更多
In the process of acetylene hydrochlorination,the rapid deactivation of supported gold(Au)catalysts by acetylene is still a huge challenge.Here,we provide an innovative strategy for constructing an acetylene–deficien...In the process of acetylene hydrochlorination,the rapid deactivation of supported gold(Au)catalysts by acetylene is still a huge challenge.Here,we provide an innovative strategy for constructing an acetylene–deficient reaction phase on the active site by coating an ionic liquid film on the Au(H2O)/C surface.The reactant ratio of C2H2 to HCl in this acetylene–deficient reaction phase is 1:132,in contrast to the 1:1 M ratio in the gas phase,thus boosting the catalytic stability of Au(H2O)/C catalysts.The kinetic and theoretical analysis showed that the reduction of cationic gold by C2H2 and the generation of carbon deposition can be inhibited in this constructed reaction phase during reaction.The current work not only broadens the scope of supported Au catalysts in acetylene hydrochlorination,but also verifies the perspective of the tunability of stoichiometric balance,which can be used in other catalytic applications.展开更多
The localization of damage for bridges to ensure their safety is investigated in this paper. Equivalent element concept is introduced into this study at the beginning. Support reaction data of each bearing under truck...The localization of damage for bridges to ensure their safety is investigated in this paper. Equivalent element concept is introduced into this study at the beginning. Support reaction data of each bearing under truck load are found to be able to lend themselves to indicate damage. A novel index termed as symmetrical support reaction difference index (SSRDI) is then developed. The reverse mapping between the local flexurai stiffness change induced by damage and the SSRDI is generated. The proposed method based on SSRDI can be sensitive to tiny damages, and comparatively simple measurements are required during the application procedure. Another significant attraction of this method is that it can work in the presence of random uncertainties and actual support condition, which means it is suitable for real-world bridges. The effectiveness of the proposed method is demonstrated by numerical simulations performed on two kinds of bridges with reasonable damage severities. Its comparative advantage over the previous frequency method is also investigated.展开更多
Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as...Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts.展开更多
Center of gravity(COG)is an important parameter of projectiles and rockets,for which supporting reaction method(or support reaction method)is an important COG measurement method.Based on this supporting reaction metho...Center of gravity(COG)is an important parameter of projectiles and rockets,for which supporting reaction method(or support reaction method)is an important COG measurement method.Based on this supporting reaction method a novel design method is proposed to determine the key design parameters of the COG measurement system.The method can quantitatively analyze the influence of the design parameters on the COG accuracy,in the measurement system designed with supporting reaction method.Using the principle of static balance,the error propagation theory,and the system accuracy analysis method,the equal-range required sensor precision(RSP)surface and non-equal-range required sensor pair precision(RSPP)adapted surface are adopted.The influence of random errors(like sensor accuracy and distance calibration accuracy)is analyzed.The selection strategy of equal-range and non-equal-range sensors is chosen,and then the recommended calibration accuracy values are obtained.For the quality detection accuracy of±0.6 kg and the axial COG detection accuracy of±1.5 mm,the RSP surface is drawn by the proposed method,and the force sensor with±0.23 kg detection accuracy is selected.The experimental verification meets the accuracy requirements and verifies the effectiveness of the proposed design method for the system parameters of the COG measurement equipment.展开更多
Nation-Teflon bimembrane was used as an efficient support for the preparation and application of heterogeneous palladium catalysts. The supported palladium catalysts exhibit high activity and stability in the Suzuki c...Nation-Teflon bimembrane was used as an efficient support for the preparation and application of heterogeneous palladium catalysts. The supported palladium catalysts exhibit high activity and stability in the Suzuki cross-coupling of aryl bromides with arylboronic acids to afford the corresponding biaryls in good to excellent yields, and can be readily recovered and reused several times without significant loss of activity.展开更多
Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch ...Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports.展开更多
MBHA resin-supported tripeptide catalyst system containing L-proline unit has been developed for use in the direct asymmetric aldol reaction of acetone and aldehydes, which afford the corresponding products with satis...MBHA resin-supported tripeptide catalyst system containing L-proline unit has been developed for use in the direct asymmetric aldol reaction of acetone and aldehydes, which afford the corresponding products with satisfactory isolated yields and enantiomeric excesses. 2009 Hong Bin Zou. Published by E]sevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
基金funding support from the Fundamental Research Funds for the Central Universities(Grant No.2023JBZY024)the National Natural Science Foundation of China(Grant Nos.52208382 and 52278387).
文摘To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.
基金supported by the Natural Science Foundation of Beijing Municipality (Z200012)the National Natural Science Foundation of China (U21A20328,22225903)the National Key Research and Development Program of China (2021YFB4000601)。
文摘Metal nanoaggregates can simultaneously enhance the activity and stability of Fe-N-C catalysts in proton-exchange-membrane fuel cells(PEMFC).Previous studies on the relevant mechanism have focused on the direct interaction between FeN_(4)active sites and metal nanoaggregates.However,the role of carbon support that hosts metal nanoaggregates and active sites has been overlooked.Here,a Fe-N-C catalyst encapsulating inactive gold nanoparticles is prepared as a model catalyst to investigate the electronic tuning of Au nanoparticles(NPs)towards the carbon support.Au NPs donate electrons to carbon support,making it rich inπelectrons,which reduces the work function and regulates the electronic configuration of the FeN_(4)sites for an enhanced ORR activity.Meanwhile,the electron-rich carbon support can mitigate the electron depletion of FeN_(4)sites caused by carbon support oxidation,thereby preserving its high activity.The yield and accumulation of H_(2)O_(2)are thus alleviated,which delays the oxidation of the catalyst and benefits the stability.Due to the electron-rich carbon support,the composite catalyst achieves a top-level peak power density of 0.74 W/cm^(2) in a 1.5 bar H_(2)-air PEMFC,as well as the improved stability.This work elucidates the key role of carbon support in the performance enhancement of the FeN-C/metal nanoaggregate composite catalysts for fuel cell application.
基金The work was supported by the National Natural Science Foundation of China(52372174)Carbon Neutrality Research Institute Fund(CNIF20230204)Special Project of Strategic Cooperation between China National Petroleum Corporation and China University of Petroleum(Beijing)(ZLZX-2020-04).
文摘Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures.
基金supported by the National Natural Science Committee of China-Liaoning Provincial People's Government Joint Fund(U1908204)National Natural Science Foundation of China(21876006,21976009,and 21961160743)+2 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(IDHT20190503)Natural Science Foundation of Beijing Municipal Commission of Education(KM201710005004)Development Program for the Youth Outstanding-Notch Talent of Beijing Municipal Commission of Education(CIT&TCD201904019)。
文摘Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.
基金Supported by the Natural Scientific Foundation of China No.30027001
文摘AIM: To establish a method detecting porcine endogenous retrovirus (PERV) in China experimental minipigs and to evaluate the safety of PERV in three individuals treated with bioartificial liver support systems based on porcine hepatocytes. METHODS: Porcine hepatocytes were isolated with two-stage perfusion method, then cultured in the bioreactor, which is separated by a semipermeable membrane (0.2μm) from the lumen through which the patients' blood plasma was circulated. After posthemoperfusion, patients' blood was obtained for screening. Additionally, samples of medium collected from both intraluminal and extraluminal compartments of the laboratory bioreactor and culture supernate in vitro was analyzed. The presence of viral sequences was estimated by polymerase chain reaction (PCR) and reverse transcriptase-polymerase chain reaction (RTPCR). Finally, the infection of virus in the supernate of common culture was ascertained by exposure to the fetal liver cells. RESULTS: PERV-specific gag sequences were found in the porcine hepatocytes using RT-PCR. and were detected in all samples from the intraluminal, extraluminal samples and culture supernate. However, culture supernatant from primary porcine hepatocytes (cleared of cellular debris) failed to infect human fetal liver cells. Finally, RT-PCR detected no PERV infection was found in the blood samples obtained from three patients at various times post-hemoperfusion. CONCLUSION: The assays used are specific and sensitive, identified by second PCR. PERVs could be released from hepatocytes cultured in bioreactor without the stimulation of mitogen and could not be prevented by the hollow fiber semipermeable membrane, indicating the existence of PERV safety in extracorporeal bioartificial liver support system (EBLSS).
基金support from the National Natural Science Foundation of China (51402100 and 21573066)the Provincial Natural Science Foundation of Hunan (2016JJ1006 and 2016TP1009)
文摘The electrochemical hydrogen evolution reaction(HER) on a non-precious electrocatalyst in an alkaline environment is of essential importance for future renewable energy. The design of advanced electrocatalysts for HER is the most important part to reduce the cost and to enhance the efficiency of water splitting. MoSis considered as one of the most promising electrocatalysts to replace the precious Pt catalyst.Herein, for the first time, we have successfully loaded MoSelectrocatalysts onto the CoOnanosheet array to catalyze HER with a low onset potential of6 mV. The high hydrogen evolution activity of MoSsupported on the CoOnanosheet array may be attributed to the increased active sites and the electronic interactions between MoSand CoO.
基金the National Key Research and Development Program of China(No.2016YFB0600900)the National Natural Science Foundation of China(Nos.21676194 and 21873067)for their support。
文摘The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization.
基金financial support from the National Natural Science Foundation of China(21832001 and 21771009)the Beijing National Laboratory for Molecular Sciences(BNLMSCXXM-202104)。
文摘The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of support doping and bimetallic alloying on the catalytic performance of Pt/Ce O_(2)-based nanocatalysts in water gas shift reaction was reported in this work.Various lanthanide ions and 3d transition metals were respectively introduced into the Ce O_(2)support or Pt to form Pt/Ce O_(2):Ln(Ln=La,Nd,Gd,Tb,Yb)and Pt M/Ce O_(2)(M=Fe,Co,Ni)nanocatalysts.The sample of Pt/Ce O_(2):Tb showed the highest activity(TOF at 200℃=0.051 s^(-1))among the Pt/Ce O_(2):Ln and the undoped Pt/Ce O_(2)catalysts.Besides,the sample of Pt Fe/Ce O_(2)exhibited the highest activity(TOF at 200℃=0.12 s^(-1))among Pt M/Ce O_(2)catalysts.The results of the multiple characterizations indicated that the catalytic activity of Pt/Ce O_(2):Ln catalysts was closely correlated with the amount of oxygen vacancies in doped ceria support.However,the different activity of Pt M/Ce O_(2)bimetallic catalysts was owing to the various Pt oxidation states of the bimetals dispersed on ceria.The study of the reaction pathway indicated that both the samples of Pt/Ce O_(2)and Pt/Ce O_(2):Tb catalyzed the reaction through the formate pathway,and the enhanced activity of the latter derived from the increased concentration of oxygen vacancies along with promoted water dissociation.As for the sample of Pt Fe/Ce O_(2),its catalytic mechanism was the carboxyl route with a higher reaction rate due to the moderate valence of Pt along with improved CO activation.
基金supported by research grants of the NRF (2019K1A3A1A21032033 and 2021R1A4A1024129) funded by the National Research Foundation under the Ministry of Science, ICT & Future, Koreasupported by the Korea Institute for Advancement of Technology (KIAT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (P0017363)。
文摘Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered by the absence of inexpensive high-performance electrocatalysts for the hydrogen evolution reaction (HER).Re-based HER electrocatalysts exhibit predictable high performance within the entire pH range but suffer from arduous formation (i.e.,vulnerability to oxidation) and uncontrollable aggregation,which strongly discourages the maximisation of active site exposure required for activity enhancement.To overcome these limitations,we herein hydrothermally synthesise Re nanoclusters uniformly distributed on nanosheet supports,such as reduced graphene oxide nanosheets (Re NCs@rGO),revealing that this hybrid features abundant exposed active sites and high oxidation resistance.The obtained electrocatalysts were elaborately characterized by microscopic and spectroscopic analyses.Also,density functional theory calculations confirm the optimised synthesis of Re NCs@rGO and indicate the crucial role of Re–O–C junction formation in securing durability.The effective suppression of Re nanocluster detachment/dissolution under HER conditions endows Re NCs@rGO with high electron conductivity and electrochemical stability,resulting in a durability superior to that of commercial Pt/C and an activity similar to that of this reference.As a result,Re NCs@rGO exhibited remarkably small HER overpotentials of 110,130,and 93 m V to deliver a current density of 10 mA cm^(-2) in 0.5 M H_(2)SO_(4),1 M PBS,and 1 M KOH,respectively.Thus,Re NCs@rGO is a promising alternative to conventional Pt-group-metal catalysts and should find applications in next-generation high-performance water splitting systems.
基金Project(21406273)supported by the National Natural Science Foundation of China
文摘Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.
文摘With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is ascribed to the bridged CO on metallic gold (2085 cm -1 ). CO pulse reaction showed that Au/Fe 2O 3 catalyst had a room temperature activity even in the presence of moisture. The produced CO 2 was detained and more easily desorbed from supported gold catalyst than support oxide. TPD IDT results indicated that the O - 2 superoxide ions are the possible active oxygen species.
基金Universiti Kebangsaan Malaysia for the financial support
文摘The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research.Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions,in gas and liquid phase reactions.In the present review,we discuss the recent development of heterogeneous,supported monometallic gold catalysts for organic transformations emphasizing mainly liquid phase hydrogenation reactions.Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out.Applications of heterogeneous,supported monometallic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.
基金the National Natural Science Foundation of China(NSFCgrant No.21606199,21476207)the Science and Technology Department of Zhejiang Province(LGG20B060004)are gratefully acknowledged.
文摘In the process of acetylene hydrochlorination,the rapid deactivation of supported gold(Au)catalysts by acetylene is still a huge challenge.Here,we provide an innovative strategy for constructing an acetylene–deficient reaction phase on the active site by coating an ionic liquid film on the Au(H2O)/C surface.The reactant ratio of C2H2 to HCl in this acetylene–deficient reaction phase is 1:132,in contrast to the 1:1 M ratio in the gas phase,thus boosting the catalytic stability of Au(H2O)/C catalysts.The kinetic and theoretical analysis showed that the reduction of cationic gold by C2H2 and the generation of carbon deposition can be inhibited in this constructed reaction phase during reaction.The current work not only broadens the scope of supported Au catalysts in acetylene hydrochlorination,but also verifies the perspective of the tunability of stoichiometric balance,which can be used in other catalytic applications.
基金National Key Basic Research and Development Program of China (973 program) (No. 2002CB412709)
文摘The localization of damage for bridges to ensure their safety is investigated in this paper. Equivalent element concept is introduced into this study at the beginning. Support reaction data of each bearing under truck load are found to be able to lend themselves to indicate damage. A novel index termed as symmetrical support reaction difference index (SSRDI) is then developed. The reverse mapping between the local flexurai stiffness change induced by damage and the SSRDI is generated. The proposed method based on SSRDI can be sensitive to tiny damages, and comparatively simple measurements are required during the application procedure. Another significant attraction of this method is that it can work in the presence of random uncertainties and actual support condition, which means it is suitable for real-world bridges. The effectiveness of the proposed method is demonstrated by numerical simulations performed on two kinds of bridges with reasonable damage severities. Its comparative advantage over the previous frequency method is also investigated.
基金the Engineering and Physical Science Research Council(EPSRC),U.K.for the award of a research grant EP/J0118058/1 and postdoctoral research assistantships(PDRAs) to M.R.W.and R.W.M.from the grant。
文摘Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts.
基金Supported by National Key Research and Development Program of China(2018YFB1306300)。
文摘Center of gravity(COG)is an important parameter of projectiles and rockets,for which supporting reaction method(or support reaction method)is an important COG measurement method.Based on this supporting reaction method a novel design method is proposed to determine the key design parameters of the COG measurement system.The method can quantitatively analyze the influence of the design parameters on the COG accuracy,in the measurement system designed with supporting reaction method.Using the principle of static balance,the error propagation theory,and the system accuracy analysis method,the equal-range required sensor precision(RSP)surface and non-equal-range required sensor pair precision(RSPP)adapted surface are adopted.The influence of random errors(like sensor accuracy and distance calibration accuracy)is analyzed.The selection strategy of equal-range and non-equal-range sensors is chosen,and then the recommended calibration accuracy values are obtained.For the quality detection accuracy of±0.6 kg and the axial COG detection accuracy of±1.5 mm,the RSP surface is drawn by the proposed method,and the force sensor with±0.23 kg detection accuracy is selected.The experimental verification meets the accuracy requirements and verifies the effectiveness of the proposed design method for the system parameters of the COG measurement equipment.
文摘Nation-Teflon bimembrane was used as an efficient support for the preparation and application of heterogeneous palladium catalysts. The supported palladium catalysts exhibit high activity and stability in the Suzuki cross-coupling of aryl bromides with arylboronic acids to afford the corresponding biaryls in good to excellent yields, and can be readily recovered and reused several times without significant loss of activity.
基金the support of the National Natural Science Foundation of China (20222809, 21978146)TsinghuaFoshan Innovation Special Fund (2021THFS0214)。
文摘Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports.
文摘MBHA resin-supported tripeptide catalyst system containing L-proline unit has been developed for use in the direct asymmetric aldol reaction of acetone and aldehydes, which afford the corresponding products with satisfactory isolated yields and enantiomeric excesses. 2009 Hong Bin Zou. Published by E]sevier B.V. on behalf of Chinese Chemical Society. All rights reserved.