期刊文献+
共找到226篇文章
< 1 2 12 >
每页显示 20 50 100
A Highly Accurate Dysphonia Detection System Using Linear Discriminant Analysis
1
作者 Anas Basalamah Mahedi Hasan +1 位作者 Shovan Bhowmik Shaikh Akib Shahriyar 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1921-1938,共18页
The recognition of pathological voice is considered a difficult task for speech analysis.Moreover,otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysph... The recognition of pathological voice is considered a difficult task for speech analysis.Moreover,otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysphonia that are caused by voice alteration of vocal folds and their accuracy is between 60%–70%.To enhance detection accuracy and reduce processing speed of dysphonia detection,a novel approach is proposed in this paper.We have leveraged Linear Discriminant Analysis(LDA)to train multiple Machine Learning(ML)models for dysphonia detection.Several ML models are utilized like Support Vector Machine(SVM),Logistic Regression,and K-nearest neighbor(K-NN)to predict the voice pathologies based on features like Mel-Frequency Cepstral Coefficients(MFCC),Fundamental Frequency(F0),Shimmer(%),Jitter(%),and Harmonic to Noise Ratio(HNR).The experiments were performed using Saarbrucken Voice Data-base(SVD)and a privately collected dataset.The K-fold cross-validation approach was incorporated to increase the robustness and stability of the ML models.According to the experimental results,our proposed approach has a 70%increase in processing speed over Principal Component Analysis(PCA)and performs remarkably well with a recognition accuracy of 95.24%on the SVD dataset surpassing the previous best accuracy of 82.37%.In the case of the private dataset,our proposed method achieved an accuracy rate of 93.37%.It can be an effective non-invasive method to detect dysphonia. 展开更多
关键词 Dimensionality reduction dysphonia detection linear discriminant analysis logistic regression speech feature extraction support vector machine
下载PDF
Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods 被引量:16
2
作者 周健 李夕兵 +2 位作者 史秀志 魏威 吴帮标 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2734-2743,共10页
The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ... The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines. 展开更多
关键词 underground mine pillar stability Fisher discriminant analysis (FDA) support vector machines (SVMs) PREDICTION
下载PDF
Image Analysis in Microbiology: A Review 被引量:1
3
作者 Evgeny Puchkov 《Journal of Computer and Communications》 2016年第15期8-32,共26页
This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) object... This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) objects in the microbiological research. This is the way of making many visual inspection assays more objective and less time and labor consuming. Also, it can provide new visually inaccessible information on relation between some optical parameters and various biological features of the microbial cul-tures. Of special interest is application of image analysis in fluorescence microscopy as it opens new ways of using fluorescence based methodology for single microbial cell studies. Examples of using image analysis in the studies of both the macroscopic and the microscopic microbiological objects obtained by various imaging techniques are presented and discussed. 展开更多
关键词 Computer Image analysis Microorganisms VIABILITY Yeast Bacteria Fungi Colony Counter Microbial Identification Multispectral Imaging Hyperspectral Imaging Diffraction Pattern Imaging Scatter Pattern Imaging Multifractal analysis support vector Machines Principal Component analysis Linear discriminant analysi IMAGEJ Matlab Fluorescence Microscopy Microfluorimetry Green Fluorescent Protein (GFP)
下载PDF
Recognition for avian influenza virus proteins based on support vector machine and linear discriminant analysis
4
作者 LIANG GuiZhao CHEN ZeCong +52 位作者 YANG ShanBin MEI Hu ZHOU Yuan YANG Li ZHOU Peng YANG ShengXi SHU Mao LIAO ChunYang WU ShiRong LI GenRong HE Liu GAO JianKun Gan MengYu LI DeJing CHEN GuoPing WANG GuiXue LONG Sha JING JuHua ZHENG XiaoLin ZENG Hui ZHANG QiaoXia ZHANG MengJun YANG Qi TIAN FeiFei TONG JianBo WANG JiaoNa LIU YongHong LI Bo QIU LiangJia CAI ShaoXi ZHAO Na YANG Yan SU XiaLi SONG Jian CHEN MeiXia ZHANG XueJiao SUN JiaYing LI JingWei CHEN GuoHua CHEN Gang DENG Jie PENG ChuanYou ZHU WanPing XU LuoNan WU YuQuan LIAO LiMin LI Zhi LI Jun LU DaJun SU QinLiang HUANG ZhengHu ZHOU Ping LI ZhiLiang 《Science China Chemistry》 SCIE EI CAS 2008年第2期166-170,共5页
Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples. Some recognition models for HA proteins of avian influe... Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples. Some recognition models for HA proteins of avian influenza virus (AIV) were developed using support vector machine (SVM) and linear discriminant analysis (LDA). The results obtained from LDA are as follows: the identification accuracy (Ria) for training samples is 99.8% and Ria by leave one out cross validation is 99.5%. Both Ria of 99.8% for training samples and Ria of 99.3% by leave one out cross validation are obtained using SVM model, respectively. External 200 HA proteins of influenza virus were used to validate the external predictive power of the resulting model. The external Ria for them is 95.5% by LDA and 96.5% by SVM, respectively, which shows that HA proteins of AIVs are preferably recognized by SVM and LDA, and the performances by SVM are superior to those by LDA. 展开更多
关键词 AVIAN INFLUENZA virus (AIV) HA protein support vector machine (SVM) linear discriminant analysis (LDA)
原文传递
Effective Classification of Synovial Sarcoma Cancer Using Structure Features and Support Vectors
5
作者 P.Arunachalam N.Janakiraman +5 位作者 Junaid Rashid Jungeun Kim Sovan Samanta Usman Naseem Arun Kumar Sivaraman A.Balasundaram 《Computers, Materials & Continua》 SCIE EI 2022年第8期2521-2543,共23页
In this research work,we proposed a medical image analysis framework with two separate releases whether or not Synovial Sarcoma(SS)is the cell structure for cancer.Within this framework the histopathology images are d... In this research work,we proposed a medical image analysis framework with two separate releases whether or not Synovial Sarcoma(SS)is the cell structure for cancer.Within this framework the histopathology images are decomposed into a third-level sub-band using a two-dimensional Discrete Wavelet Transform.Subsequently,the structure features(SFs)such as PrincipalComponentsAnalysis(PCA),Independent ComponentsAnalysis(ICA)and Linear Discriminant Analysis(LDA)were extracted from this subband image representation with the distribution of wavelet coefficients.These SFs are used as inputs of the Support Vector Machine(SVM)classifier.Also,classification of PCA+SVM,ICA+SVM,and LDA+SVM with Radial Basis Function(RBF)kernel the efficiency of the process is differentiated and compared with the best classification results.Furthermore,data collected on the internet from various histopathological centres via the Internet of Things(IoT)are stored and shared on blockchain technology across a wide range of image distribution across secure data IoT devices.Due to this,the minimum and maximum values of the kernel parameter are adjusted and updated periodically for the purpose of industrial application in device calibration.Consequently,these resolutions are presented with an excellent example of a technique for training and testing the cancer cell structure prognosis methods in spindle shaped cell(SSC)histopathological imaging databases.The performance characteristics of cross-validation are evaluated with the help of the receiver operating characteristics(ROC)curve,and significant differences in classification performance between the techniques are analyzed.The combination of LDA+SVM technique has been proven to be essential for intelligent SS cancer detection in the future,and it offers excellent classification accuracy,sensitivity,specificity. 展开更多
关键词 Principal components analysis independent components analysis linear discriminant analysis support vector machine blockchain technology IoT application industry application
下载PDF
基于近红外光谱技术的六大茶类快速识别 被引量:2
6
作者 张灵枝 黄艳 +2 位作者 于英杰 林刚 孙威江 《食品与生物技术学报》 CAS CSCD 北大核心 2024年第1期48-59,共12页
为构建高质量的六大茶类识别模型,本研究中收集了370份样品,通过采集其近红外光谱(near-infrared spectroscopy,NIRS),结合光谱预处理、特征提取以及数据挖掘分类器算法,建立六大茶类快速识别模型。结果表明:1)支持向量机(support vecto... 为构建高质量的六大茶类识别模型,本研究中收集了370份样品,通过采集其近红外光谱(near-infrared spectroscopy,NIRS),结合光谱预处理、特征提取以及数据挖掘分类器算法,建立六大茶类快速识别模型。结果表明:1)支持向量机(support vector machine,SVM)与随机森林(random forest,RF)分类器皆适于六大茶类快速识别模型的构建;2)SVM分类器更适于结合原始光谱(original spectrum,OS)建模,预处理易使基于该分类器建立的模型鉴别性能减弱;3)随机森林(RF)分类器更适用于预处理后光谱建模,所得模型较OS模型在识别正确率(recognition accuracy,RA)及受试者工作特征曲线下面积(area under the curve,AUC)均得到明显提升;4)特征提取中线性判别分析(linear discriminant analysis,LDA)算法表现最好,所得模型的RA较OS模型明显提升,其中最佳模型OS-LDA-SVM的RA为100.00%,AUC为1.00,识别正确率高、泛化能力强、模型性能优异,可产业化应用。综上所述,近红外光谱结合预处理、特征提取算法及分类器建立模型,进行六大茶类识别的可行性强,模型的识别正确率高、性能优异,可为茶叶贸易的茶类快速识别提供科学、准确、高效的技术支撑,为国际茶类识别模型的产业化应用奠定基础。 展开更多
关键词 近红外光谱 茶类识别 支持向量机 随机森林 线性判别分析
下载PDF
三维荧光光谱融合小波包分解融合Fisher判别分析及支持向量机识别紫苏
7
作者 任永杰 殷勇 +1 位作者 于慧春 袁云霞 《食品科学》 EI CAS CSCD 北大核心 2024年第1期198-203,共6页
为实现紫苏品种的快速鉴别,避免以次充好,选取4个品种的紫苏采集三维荧光数据,提出了一种基于小波包分解融合Fisher判别分析(Fisher discriminant analysis,FDA)的荧光数据特征选择策略,并实施了4种紫苏的有效鉴别。首先,对三维荧光数... 为实现紫苏品种的快速鉴别,避免以次充好,选取4个品种的紫苏采集三维荧光数据,提出了一种基于小波包分解融合Fisher判别分析(Fisher discriminant analysis,FDA)的荧光数据特征选择策略,并实施了4种紫苏的有效鉴别。首先,对三维荧光数据进行预处理,采用Delaunay三角形内插值法去除瑞利散射和拉曼散射,以消除它们的不利影响;运用Savitzky-Golar卷积平滑对数据进行平滑处理,以减少噪声的干扰。同时,对三维荧光数据进行初步筛选,去除了荧光强度小于0.01的发射波长。然后,对各激发波长对应的发射光谱进行3层sym4小波包分解,计算得到最低频段的小波包能量值,作为各激发波长光谱数据表征量。接着,再利用FDA对小波包能量进行判别分析,将其所包含的差异性信息进行融合,得到FDA生成的新变量,并选取累计判别能力达到99%的前3个FD变量作为不同品种差异性信息的表征变量,提出三维荧光数据的表征策略。最后,利用BP神经网络(backpropagation neural network,BPNN)和支持向量机(support vector machine,SVM)两种模式识别算法对表征变量进行分析,得到FDA+BPNN和FDA+SVM两种鉴别结果。FDA+BPNN的训练集正确率为97.5%,测试集正确率为95%;FDA+SVM的训练集和测试集的正确率均达到98.33%。结果表明,三维荧光光谱技术结合小波包分解、FDA和SVM算法基本上能够实现紫苏品种的鉴别。这为后续有关紫苏的进一步检测研究(如某些有效成分的定量检测)提供了研究基础。 展开更多
关键词 紫苏 三维荧光 小波包分解 FISHER判别分析 BP神经网络 支持向量机
下载PDF
基于PCA-LDA-SVM算法的茶小绿叶蝉识别 被引量:2
8
作者 吴鹏 刘金兰 《中国农机化学报》 北大核心 2024年第1期295-300,共6页
为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而... 为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而减少后续的计算时间;再利用线性判别分析(LDA)寻找特征数据的最优投影空间,使类内散布距离最小,类间散布距离最大,进一步提高识别的准确率和精确度;最后,利用支持向量机(SVM)分类器进行分类识别。试验结果表明,PCA-LDA-SVM模型识别准确率达96%,精确度达100%,召回率达92%,整体识别性能优于SVM,BP,KNN,PCA-SVM模型,具备一定的理论价值和参考意义。 展开更多
关键词 茶小绿叶蝉 病虫害识别 主成分分析(PCA) 线性判别分析(LDA) 支持向量机(SVM)
下载PDF
拉曼光谱结合化学计量学方法鉴别糖浆掺假蜂蜜 被引量:1
9
作者 寇泽坤 陈国通 +3 位作者 李思雨 杨中 欧阳玲秀 龚龑 《食品科学》 EI CAS CSCD 北大核心 2024年第1期254-260,共7页
为区分掺加糖浆的假蜂蜜,确定其糖浆含量,提出一种以拉曼光谱技术结合化学计量学方法快速鉴别掺假蜂蜜的方法。利用拉曼光谱技术测定蜂蜜样本的光谱数据,利用主成分分析对光谱数据进行特征提取,选取累计贡献率达85%以上的主成分进行建... 为区分掺加糖浆的假蜂蜜,确定其糖浆含量,提出一种以拉曼光谱技术结合化学计量学方法快速鉴别掺假蜂蜜的方法。利用拉曼光谱技术测定蜂蜜样本的光谱数据,利用主成分分析对光谱数据进行特征提取,选取累计贡献率达85%以上的主成分进行建模和预测。通过建立线性判别分析(linear discriminant analysis,LDA)和偏最小二乘判别分析(partial least squares-discriminant analysis,PLS-DA)模型,能够判别掺假蜂蜜中20%的糖浆含量差异。通过建立支持向量机(support vector machine,SVM)模型,能够判别掺假蜂蜜中5%的糖浆含量差异,且LDA、PLS-DA和SVM皆能以0.9以上的准确率区分1%糖浆含量的掺假蜂蜜样本和真蜂蜜样本。拉曼光谱技术结合化学计量学方法是一种快速无损、准确率高的掺假蜂蜜鉴别方法,其为蜂蜜及蜂蜜产品的快速鉴定提供了一种可行的思路,对维持蜂蜜市场秩序具有一定的意义。 展开更多
关键词 蜂蜜 糖浆掺假 拉曼光谱技术 主成分分析 线性判别分析 偏最小二乘判别分析 支持向量机
下载PDF
基于PLS-DA和LS-SVM的可见/短波近红外光谱鉴定港种四九、十月红和九月鲜菜心种子的可行性研究
10
作者 章海亮 聂训 +5 位作者 廖少敏 詹白勺 罗微 刘书玲 刘雪梅 谢潮勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1718-1723,共6页
目前市面上菜心的品种复杂,不同菜心种子的品质与发芽率不同,但菜心种子单从外观上差别不大,因此区分菜心种子的类别成为了一大难题。为了实现菜心种子类别的快速区分,探究了基于可见/短波近红外光谱分析菜心种子类别的可行性。从南昌... 目前市面上菜心的品种复杂,不同菜心种子的品质与发芽率不同,但菜心种子单从外观上差别不大,因此区分菜心种子的类别成为了一大难题。为了实现菜心种子类别的快速区分,探究了基于可见/短波近红外光谱分析菜心种子类别的可行性。从南昌市种子交易场所购买了港种四九、十月红和九月鲜三个品种的菜心种子,从中挑选出品相较好且大小适中的子粒,将每种菜心种子均匀分为30份,按照2∶1划分为建模集和预测集,所有样本共计90份。通过近红外光谱仪获取采样间隔为1 nm的菜心种子的光谱反射率,波长覆盖范围325~1075 nm,将原始光谱数据采用多元散射校正(MSC)、卷积平滑(S-G)和标准正态变换(SNV)三种预处理方法进行预处理,预处理后的光谱变量建立偏最小二乘回归(PLSR)模型,确定了SNV是最佳预处理方法。采用主成分分析(PCA)对菜心种子进行了聚类分析,从前三个主成分因子(PCs)得分图可知三种菜心种子存在光谱特征差异。将原始光谱变量、前三个PCs(累计贡献97.15%)和基于随机蛙跳(RF)算法挑选的13个特征波长作为偏最小二乘判别(PLS-DA)和最小二乘支持向量机(LS-SVM)模型的输入变量,从模型结果可知:三种输入变量中,采用RF筛选特征波长作为模型输入变量时,模型预测效果最好,PCs建立的模型最差,相比于PCA分析,采用RF筛选出的特征波长更能够反映原始光谱信息。比较不同模型预测效果,LS-SVM模型比PLS-DA模型得到的预测精度更好,其中RF-LS-SVM模型是所有模型中最佳的预测模型,建模集和预测集均为100%。采用可见/短波近红外光谱研究菜心种子的类别可行,并且能够获得很好地预测效果,为菜心种子的快速区分提供了理论依据。 展开更多
关键词 菜心种子 主成分分析 随机青蛙 偏最小二乘判别 最小二乘支持向量机
下载PDF
核泄漏事故风险评估中的概率分析及预测
11
作者 何博文 关群 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第2期161-168,共8页
文章利用逻辑回归模型(logistic regression model,LRM)、线性判别模型(linear discriminant model,LDM)和支持向量机(support vector machine,SVM)3种统计模型,从核反应堆的内部和外部因素2个方面评估其在核泄漏事故中所体现的相关安... 文章利用逻辑回归模型(logistic regression model,LRM)、线性判别模型(linear discriminant model,LDM)和支持向量机(support vector machine,SVM)3种统计模型,从核反应堆的内部和外部因素2个方面评估其在核泄漏事故中所体现的相关安全性能。针对每种模型,利用数理统计理论探究核反应堆相关影响因素与其发生核泄漏事故的概率。研究发现核反应堆外部因素有主导内部因素的趋势并在整个核泄漏事故风险中占有举足轻重的地位。文章提供的模型分析与预测结果可为核反应堆工程师及其相关决策者在核反应堆的选址、设计及建设运营等方面提供参考。 展开更多
关键词 核泄漏 风险评估 概率分析 逻辑回归模型(LRM) 线性判别模型(LDM) 支持向量机(SVM)
下载PDF
线性判别分析优化孪生支持向量机的网络入侵检测 被引量:3
12
作者 周湘贞 李帅 隋栋 《济南大学学报(自然科学版)》 CAS 北大核心 2023年第4期466-471,共6页
为了提高大规模网络数据入侵类型实时检测的准确率,采用线性判别分析(LDA)对网络样本特征进行降维处理,降低孪生支持向量机(TWSVM)的运算复杂度,增强TWSVM的网络入侵检测适用度;首先,采用LDA基于类内和类间散度计算获得网络入侵检测样... 为了提高大规模网络数据入侵类型实时检测的准确率,采用线性判别分析(LDA)对网络样本特征进行降维处理,降低孪生支持向量机(TWSVM)的运算复杂度,增强TWSVM的网络入侵检测适用度;首先,采用LDA基于类内和类间散度计算获得网络入侵检测样本的降维特征变量;然后,建立LDA-TWSVM网络入侵检测算法,分别求解TWSVM一次规划和二次规划的核心参数;最后,输入降维特征变量,通过TWSVM输出获得网络入侵检测结果。结果表明:LDA网络样本特征降维对网络入侵检测的正向激励效果较为显著,使得所提出的算法在网络入侵检测中具有较高的适应度;相比于几种常用入侵检测算法,所提出的算法具有更高的检出率(0.9943)和更优的均方根误差(1.1328)。 展开更多
关键词 网络入侵检测 线性判别分析 孪生支持向量机 特征变量
下载PDF
基于ICEEMDAN和IMWPE-LDA-BOA-SVM的齿轮箱损伤识别模型 被引量:2
13
作者 王洪 张锐丽 吴凯 《机电工程》 CAS 北大核心 2023年第11期1709-1717,共9页
针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支... 针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支持向量机(SVM)的齿轮箱故障诊断方法(ICEEMDAN-IMWPE-LDA-BOA-SVM)。首先,采用ICEEMDAN对齿轮箱振动信号进行了分解,生成了一系列从低频到高频分布的本征模态函数分量;接着,基于相关系数筛选出包含主要故障信息的本征模态函数分量,进行了信号重构,降低了信号的噪声;随后,提出了改进多尺度加权排列熵的非线性动力学指标,并利用其提取了重构信号的故障特征,以构建反映齿轮箱故障特性的故障特征;然后,利用线性判别分析(LDA)对原始故障特征进行了压缩,以构建低维的故障特征向量;最后,采用蝴蝶优化算法(BOA)对支持向量机(SVM)的惩罚系数和核函数参数进行了优化,以构建参数最优的故障分类器,对齿轮箱的故障进行了识别;基于齿轮箱复合故障数据集对ICEEMDAN-IMWPE-BOA-SVM方法进行了实验和对比分析。研究结果表明:该方法能够较为准确地识别齿轮箱的不同故障类型,准确率达到了99.33%,诊断时间只需5.31 s,在多个方面都优于其他对比方法,在齿轮箱的故障诊断中更具有应用潜力。 展开更多
关键词 故障特征提取 信号分解及信号重构 特征降维 改进自适应噪声完备集成经验模态分解 改进多尺度加权排列熵 线性判别分析 蝴蝶优化算法 支持向量机
下载PDF
基于滤波器的动植物油光谱信号预处理方法比较及识别分类 被引量:1
14
作者 邱薇纶 丁圣 《食品与发酵工业》 CAS CSCD 北大核心 2023年第8期281-288,共8页
为实现对动植物油的快速无损检验,探究滤波器在提高光谱分析模型区分能力方面的可行性,该研究借助衰减全反射-表面增强红外吸收光谱技术,采集了动物油(159份)和植物油(188份)共计347份样本的光谱信息数据,构建了Fisher判别分析、支持向... 为实现对动植物油的快速无损检验,探究滤波器在提高光谱分析模型区分能力方面的可行性,该研究借助衰减全反射-表面增强红外吸收光谱技术,采集了动物油(159份)和植物油(188份)共计347份样本的光谱信息数据,构建了Fisher判别分析、支持向量机和决策树3种分类模型。比较了希尔伯特变换、有限长单位脉冲响应滤波器、无限长冲激响应滤波器、快速傅里叶变换和小波变换5种滤波器对3种分类模型精度的影响,同时考察了滤波器窗函数(矩形窗、汉宁窗、海明窗、布莱克曼窗)、小波基函数(Morlet、Dgauss、Mexhat、Haar、Daubechies、Biorthogonal)、滤波方式(低通、高通、带通、带阻)在动植物油样本区分效果方面的差异性。结果发现,滤波器能显著提升光谱分析模型的准确性,低通和带阻滤波方式,矩形窗和布莱克曼窗函数能有效提升模型对样本的区分能力,相较于其他2种算法,支持向量机对各样本的识别区分能力最好。基于FIR低通/带阻滤波器处理后构建的SVM模型(RBF核函数)可作为动植物油样本识别的最佳模型,其对347份样本实现了100%的“类别-品牌”的两级准确区分。综上,滤波器可有效提升光谱分析模型的准确性,结合ATR-SEIRAS光谱信息数据,可准确区分不同的动植物油样本,这为包括动植物油在内的诸多样本的快速无损分析提供了一定参考,为滤波器在提升光谱分析模型方面的应用提供了一定借鉴。 展开更多
关键词 动植物油 衰减全反射-表面增强红外吸收光谱 滤波器 FISHER判别分析 支持向量机 决策树
下载PDF
基于游离氨基酸的烤烟配打模块香型判别方法研究
15
作者 陈红丽 周航 +4 位作者 杨永锋 胡静宜 刘茂林 刘向真 贾涛 《中国烟草科学》 CSCD 北大核心 2023年第5期79-85,共7页
为明确不同香型烤烟配打模块游离氨基酸组分差异,并实现对清香型、中间香型及浓香型烤烟复烤模块的准确分类,选取7个清香型、7个中间香型和8个浓香型烤烟配打模块为研究对象,对其游离氨基酸含量进行OPLS-DA分析,结合SVM模型进行香型判... 为明确不同香型烤烟配打模块游离氨基酸组分差异,并实现对清香型、中间香型及浓香型烤烟复烤模块的准确分类,选取7个清香型、7个中间香型和8个浓香型烤烟配打模块为研究对象,对其游离氨基酸含量进行OPLS-DA分析,结合SVM模型进行香型判别。结果表明:不同香型烤烟模块游离氨基酸总量范围为13141.72~27695.47μg/g,其中脯氨酸和天冬酰胺含量在各香型中占比最高,天冬氨酸、谷氨酸、甘氨酸、丙氨酸、胱氨酸、亮氨酸、酪氨酸、苯丙氨酸、4-氨基丁酸、赖氨酸、组氨酸、色氨酸、精氨酸和游离氨基酸总量在不同香型间存在显著性差异。丙氨酸和天冬氨酸在OPLS-DA分析中VIP值大于1且在不同香型间差异显著(p<0.05),可筛选为香型判定指标。基于21种游离氨基酸的前两种主成分构建的SVM模型对模块香型的判别率准确率为86.36%;基于筛选出的2个游离氨基酸特征指标构建的SVM模型判别准确率为90.91%。基于丙氨酸和天冬氨酸的SVM模型判别率和可信度都在较高水平,可应用于烤烟配打模块的香型判别。 展开更多
关键词 配打模块 游离氨基酸 差异分析 正交偏最小二乘判别分析法 支持向量机
下载PDF
突发事件网络舆情反转的PCA-LDA-LSSVM预测模型 被引量:2
16
作者 赵琳琳 温国锋 杨永清 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第8期186-190,共5页
为有效引导与控制突发事件网络舆情,建立科学的预警机制,提出突发事件网络舆情反转的主成分分析(PCA)-线性判别分析(LDA)-最小二乘支持向量机(LSSVM)预测模型。利用PCA提取具有相关性的影响因素主成分,利用LDA方法分析相互独立的影响因... 为有效引导与控制突发事件网络舆情,建立科学的预警机制,提出突发事件网络舆情反转的主成分分析(PCA)-线性判别分析(LDA)-最小二乘支持向量机(LSSVM)预测模型。利用PCA提取具有相关性的影响因素主成分,利用LDA方法分析相互独立的影响因素和主成分对突发事件网络舆情反转的影响,并将LDA分析后的影响因素作为LSSVM的输入向量,预测突发事件网络舆情反转,通过选取33组突发事件网络舆情数据进行试验研究。研究结果表明:影响因素重要性由大到小依次为网民情感正倾向、网民情感负倾向、舆情事件性质、舆情传播形式、舆情首发主体权威性;当网民情感正倾向明显减少、网民情感负倾向明显增加时,应采取措施引导舆情发展。 展开更多
关键词 突发事件 网络舆情 主成分分析(PCA) 线性判别分析(LDA) 最小二乘支持向量机(LSSVM)
下载PDF
基于稀疏主成分分析特征选择算法的山楂叶产地判别模型研究 被引量:1
17
作者 梁小娟 王娅妮 +4 位作者 马晋芳 孙鹏 郭拓 严诗楷 肖雪 《分析测试学报》 CAS CSCD 北大核心 2023年第3期307-314,共8页
为实现山楂叶产地的快速判别,提出一种基于稀疏主成分分析特征选择(SPCAFS)与支持向量机(SVM)建模的定性分析方法。采用近红外积分球漫反射光谱法采集6个产地共41批山楂叶123份样品的近红外光谱图,经数据预处理后,通过SPCAFS对代表性特... 为实现山楂叶产地的快速判别,提出一种基于稀疏主成分分析特征选择(SPCAFS)与支持向量机(SVM)建模的定性分析方法。采用近红外积分球漫反射光谱法采集6个产地共41批山楂叶123份样品的近红外光谱图,经数据预处理后,通过SPCAFS对代表性特征波段进行选择,并采用SVM建立山楂叶近红外产地判别模型。模型与连续投影(SPA),正则化自表示(RSR)和稀疏子空间聚类(SSC)3种特征选择算法进行对比,以准确率、精确度和灵敏度作为评价标准,评估所提模型的预测性能。结果显示,SPCAFS的特征波段数相比于全波长建模从1500减少到21,预测结果的准确率和精确度分别从78%、76%提升至97%、100%。同时,相比于SPA、RSR、SSC算法,准确率分别提升了6%、3%、3%,精确度分别提升了13%、10%、5%,模型的预测能力得到显著提升,基于SPCAFS的SVM判别模型可实现山楂叶南北产地的快速判别。 展开更多
关键词 近红外光谱 特征选择 山楂叶 产地判别 稀疏主成分分析特征选择算法 支持向量机
下载PDF
Landslide susceptibility assessment in Western Henan Province based on a comparison of conventional and ensemble machine learning 被引量:1
18
作者 Wen-geng Cao Yu Fu +4 位作者 Qiu-yao Dong Hai-gang Wang Yu Ren Ze-yan Li Yue-ying Du 《China Geology》 CAS CSCD 2023年第3期409-419,共11页
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive... Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management. 展开更多
关键词 Landslide susceptibility model Risk assessment Machine learning support vector machines Logistic regression Random forest Extreme gradient boosting Linear discriminant analysis Ensemble modeling Factor analysis Geological disaster survey engineering Middle mountain area Yellow River Basin
下载PDF
高光谱成像的水稻冠层穗颈瘟早期识别
19
作者 袁建清 仇逊超 +2 位作者 贾银江 南洋 苏中滨 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期57-65,共9页
为实现田间水稻冠层穗颈瘟的早期识别,利用室外高光谱成像系统采集早期自然发病大田的水稻冠层穗颈瘟图像,提取、分析反射率光谱特征.对预处理后的高光谱数据,采用主成分分析(Principal Component Analysis,PCA)、植被指数(Vegetation I... 为实现田间水稻冠层穗颈瘟的早期识别,利用室外高光谱成像系统采集早期自然发病大田的水稻冠层穗颈瘟图像,提取、分析反射率光谱特征.对预处理后的高光谱数据,采用主成分分析(Principal Component Analysis,PCA)、植被指数(Vegetation Index,VI)和竞争性自适应重加权法(Competitive Adaptive Reweighted Sampling,CARS)3种方法提取特征变量,结合支持向量机(Support Vector Machine,SVM)和线性判别分析(Linear Discriminant Analysis,LDA)分类算法构建识别模型.结果显示:以CARS特征波长和植被指数构建的模型,从分类结果看都取得了不错的效果,但是特征波长数量较多,可能存在过拟合的风险;单独使用PCA获得的主成分构建水稻冠层识别模型,没有明显效果.为此,研究尝试对选取的植被指数和提取的CARS特征使用PCA进一步降维,得到4个VI-PCs特征和5个CARS-PCs特征用于建模,取得了很好的效果.基于VI-PCs特征的SVM模型和LDA模型的总体分类精度分别为94%和95%;基于CARS-PCs特征的SVM模型和LDA模型总体分类精度分别为95%和97%,实现用较少变量获得较好的区分效果.从模型构建算法来看,LDA算法模型均优于SVM算法模型,说明LDA方法更适合于水稻冠层穗颈瘟识别模型的构建.研究可为航空、航天大面积的作物病虫害遥感监测提供理论依据. 展开更多
关键词 高光谱成像 水稻穗颈瘟 竞争性自适应重加权法 支持向量机 判别分析
下载PDF
农药对蚯蚓急性毒性的分类建模研究
20
作者 楚留意 丛建业 +2 位作者 刘洋 魏宠芝 任月英 《兰州交通大学学报》 CAS 2023年第5期104-108,共5页
蚯蚓在改良土壤、消解农业废弃物以及提高土壤养分和作物产量等方面发挥着重要的作用。为了评价农药对蚯蚓的急性毒性作用,采用线性判别分析(LDA)和支持向量机(SVM)方法分别建立了基于定量结构——活性关系(QSAR)的分类模型,并探讨了对... 蚯蚓在改良土壤、消解农业废弃物以及提高土壤养分和作物产量等方面发挥着重要的作用。为了评价农药对蚯蚓的急性毒性作用,采用线性判别分析(LDA)和支持向量机(SVM)方法分别建立了基于定量结构——活性关系(QSAR)的分类模型,并探讨了对蚯蚓急性毒性有影响的分子结构因素。模型结果表明,含12个描述符的SVM模型对于训练集和测试集的准确率分别为96.18%和81.25%,均优于LDA的91.60%和75.00%。SVM模型对有毒物质预测的准确率高达94.23%,高于LDA的88.00%,意味着SVM模型在毒性评价方面更具意义。另外,农药对蚯蚓的急性毒性主要与分子几何形状、电荷分布特征以及极性等因素相关。 展开更多
关键词 蚯蚓 毒性 QSAR 线性判别分析 支持向量机
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部