This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to...This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus.展开更多
The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss i...The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss is not differentiable,and the LASSO penalty does not have the Oracle property.In this paper,the huberized loss is combined with non-convex penalties to obtain a model that has the advantages of both the computational simplicity and the Oracle property,contributing to higher accuracy than traditional SVMs.It is experimentally demonstrated that the two non-convex huberized-SVM methods,smoothly clipped absolute deviation huberized-SVM(SCAD-HSVM)and minimax concave penalty huberized-SVM(MCP-HSVM),outperform the traditional SVM method in terms of the prediction accuracy and classifier performance.They are also superior in terms of variable selection,especially when there is a high linear correlation between the variables.When they are applied to the prediction of listed companies,the variables that can affect and predict financial distress are accurately filtered out.Among all the indicators,the indicators per share have the greatest influence while those of solvency have the weakest influence.Listed companies can assess the financial situation with the indicators screened by our algorithm and make an early warning of their possible financial distress in advance with higher precision.展开更多
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of...To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.展开更多
The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate ...The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.展开更多
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT...To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.展开更多
Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The cl...Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.展开更多
Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines ...Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines is addressed by a proposed Probability Least Squares Support Vector Classification Machine (PLSSVCM). Samples that cannot be definitely determined as belonging to one class will be assigned to a class by the PLSSVCM based on a probability value. This gives the classification results both a qualitative explanation and a quantitative evaluation. Simulation results of a fault diagnosis show that the correct rate of the PLSSVCM is 100%. Even though samples are noisy, the PLSSVCM still can effectively realize multi-class fault diagnosis of a roller bearing. The generalization property of the PLSSVCM is better than that of a neural network and a LSSVCM.展开更多
Despite of its great efficiency for pattern classification, proximal supportvector machines (PSVM), a new version of SVM proposed recently, is sensitive to noise and outliers.To overcome the drawback, this paper modif...Despite of its great efficiency for pattern classification, proximal supportvector machines (PSVM), a new version of SVM proposed recently, is sensitive to noise and outliers.To overcome the drawback, this paper modifies PSVM by associating a weightvalue with each input dataof PSVM. The distance between each data point and the center of corresponding class is used tocalculate the weight value. In this way, the effect of noise is reduced. The experiments indicatethat new SVM, weighted proximal support vector machine (WPSVM), is much more robust to noise thanPSVM without loss of computationally attractive feature of PSVM.展开更多
A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machin...A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth, many fast opti- mization algorithms cannot be applied to solve the model. In order to overcome the difficulty of dealing with non-smooth objective functions, new methods that can solve the semi-supervised vector machine with desired classification accuracy are in great demand. A quintic spline function with three-times differentiability at the ori- gin is constructed by a general three-moment method, which can be used to approximate the symmetric hinge loss function. The approximate accuracy of the quintic spiine function is estimated. Moreover, a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed. Three experiments are performed to test the efficiency of the model. The experimental results show that the new model outperforms other smooth models, in terms of classification performance. Furthermore, the new model is not sensitive to the increasing number of the labeled samples, which means that the new model is more efficient.展开更多
One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ...One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.展开更多
Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM...Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM kernel parameter setting during the SVM training procedure, along with the feature selection significantly influences the classification accuracy. This paper proposes two novel intelligent optimization methods, which simultaneously determines the parameter values while discovering a subset of features to increase SVM classification accuracy. The study focuses on two evolutionary computing approaches to optimize the parameters of SVM: particle swarm optimization (PSO) and genetic algorithm (GA). And we combine above the two intelligent optimization methods with SVM to choose appropriate subset features and SVM parameters, which are termed GA-FSSVM (Genetic Algorithm-Feature Selection Support Vector Machines) and PSO-FSSVM(Particle Swarm Optimization-Feature Selection Support Vector Machines) models. Experimental results demonstrate that the classification accuracy by our proposed methods outperforms traditional grid search approach and many other approaches. Moreover, the result indicates that PSO-FSSVM can obtain higher classification accuracy than GA-FSSVM classification for hyperspectral data.展开更多
Support Vector Machine (SVM) is a machine learning algorithm based on the Statistical Learning Theory (SLT), which can get good classification effects with a few learning samples. SVM represents a new approach to patt...Support Vector Machine (SVM) is a machine learning algorithm based on the Statistical Learning Theory (SLT), which can get good classification effects with a few learning samples. SVM represents a new approach to pattern classification and has been shown to be particularly successful in many fields such as image identification and face recognition. It also provides us with a new method to develop intelligent fault diagnosis. This paper presents an SVM based approach for fault diagnosis of rolling bearings. Experimentation with vibration signals of bearing was conducted. The vibration signals acquired from the bearings were directly used in the calculating without the preprocessing of extracting its features. Compared with the Artificial Neural Network (ANN) based method, the SVM based method has desirable advantages. Also a multi-fault SVM classifier based on binary clas- sifier is constructed for gear faults in this paper. Other experiments with gear fault samples showed that the multi-fault SVM classifier has good classification ability and high efficiency in mechanical system. It is suitable for on line diagnosis for mechanical system.展开更多
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (...In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.展开更多
It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (...It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy.展开更多
Classification of human actions under video surveillance is gaining a lot of attention from computer vision researchers.In this paper,we have presented methodology to recognize human behavior in thin crowd which may b...Classification of human actions under video surveillance is gaining a lot of attention from computer vision researchers.In this paper,we have presented methodology to recognize human behavior in thin crowd which may be very helpful in surveillance.Research have mostly focused the problem of human detection in thin crowd,overall behavior of the crowd and actions of individuals in video sequences.Vision based Human behavior modeling is a complex task as it involves human detection,tracking,classifying normal and abnormal behavior.The proposed methodology takes input video and applies Gaussian based segmentation technique followed by post processing through presenting hole filling algorithm i.e.,fill hole inside objects algorithm.Human detection is performed by presenting human detection algorithm and then geometrical features from human skeleton are extracted using feature extraction algorithm.The classification task is achieved using binary and multi class support vector machines.The proposed technique is validated through accuracy,precision,recall and F-measure metrics.展开更多
In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as c...In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust.展开更多
In order to improve the efficiency of the support vector machine (SVM) for classification to deal with a large amount of samples, the least squares support vector machine (LSSVM) for classification methods is intr...In order to improve the efficiency of the support vector machine (SVM) for classification to deal with a large amount of samples, the least squares support vector machine (LSSVM) for classification methods is introduced into the reliability analysis. To reduce the coraputational cost, the solution of the SVM is transformed from a quadratic programming to a group of linear equations. The numerical results indicate that the reliability method based on the LSSVM for classification has higher accuracy and requires less computational cost than the SVM method.展开更多
Mental task classification is one of the most important problems in Brain-computer interface.This paper studies the classification of five-class mental tasks.The nonlinear parameter of mean period obtained from freque...Mental task classification is one of the most important problems in Brain-computer interface.This paper studies the classification of five-class mental tasks.The nonlinear parameter of mean period obtained from frequency domain information was used as features for classification implemented by using the method of SVM(support vector machines).The averaged classification accuracy of 85.6% over 7 subjects was achieved for 2-second EEG segments.And the results for EEG segments of 0.5s and 5.0s compared favorably to those of Garrett's.The results indicate that the parameter of mean period represents mental tasks well for classification.Furthermore,the method of mean period is less computationally demanding,which indicates its potential use for online BCI systems.展开更多
Glaucoma is a progressive eye disease that can lead to blindness if left untreated.Early detection is crucial to prevent vision loss,but current manual scanning methods are expensive,time-consuming,and require special...Glaucoma is a progressive eye disease that can lead to blindness if left untreated.Early detection is crucial to prevent vision loss,but current manual scanning methods are expensive,time-consuming,and require specialized expertise.This study presents a novel approach to Glaucoma detection using the Enhanced Grey Wolf Optimized Support Vector Machine(EGWO-SVM)method.The proposed method involves preprocessing steps such as removing image noise using the adaptive median filter(AMF)and feature extraction using the previously processed speeded-up robust feature(SURF),histogram of oriented gradients(HOG),and Global features.The enhanced Grey Wolf Optimization(GWO)technique is then employed with SVM for classification.To evaluate the proposed method,we used the online retinal images for glaucoma analysis(ORIGA)database,and it achieved high accuracy,sensitivity,and specificity rates of 94%,92%,and 92%,respectively.The results demonstrate that the proposed method outperforms other current algorithms in detecting the presence or absence of Glaucoma.This study provides a novel and effective approach to Glaucoma detection that can potentially improve the detection process and outcomes.展开更多
文摘This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus.
文摘The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss is not differentiable,and the LASSO penalty does not have the Oracle property.In this paper,the huberized loss is combined with non-convex penalties to obtain a model that has the advantages of both the computational simplicity and the Oracle property,contributing to higher accuracy than traditional SVMs.It is experimentally demonstrated that the two non-convex huberized-SVM methods,smoothly clipped absolute deviation huberized-SVM(SCAD-HSVM)and minimax concave penalty huberized-SVM(MCP-HSVM),outperform the traditional SVM method in terms of the prediction accuracy and classifier performance.They are also superior in terms of variable selection,especially when there is a high linear correlation between the variables.When they are applied to the prediction of listed companies,the variables that can affect and predict financial distress are accurately filtered out.Among all the indicators,the indicators per share have the greatest influence while those of solvency have the weakest influence.Listed companies can assess the financial situation with the indicators screened by our algorithm and make an early warning of their possible financial distress in advance with higher precision.
基金supported by the National Natural Science Foundation of China (60604021 60874054)
文摘To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.
基金financially supported by the National Natural Science Foundation of China,No.61263011,81000554Program in Sun Yat-sen University supported by Fundamental Research Funds for the Central Universities,No.11ykpy07+1 种基金Natural Science Foundation of Guangdong Province,No.S2011010005309Innovation Fund of Xinjiang Medical University,No.XJC201209
文摘The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.
文摘To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.
基金Project (No. 50437010) supported by the Key Program of the Na-tional Natural Science Foundation of China
文摘Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.
基金supported by the Program for New Century Excellent Talents in University (NoNCET- 08-0836)the National Natural Science Foundation of China (Nos60804022, 60974050 and 61072094)+1 种基金the Fok Ying-Tung Education Foundation for Young Teachers (No121066)by the Natural Science Foundation of Jiangsu Province (No.BK2008126)
文摘Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines is addressed by a proposed Probability Least Squares Support Vector Classification Machine (PLSSVCM). Samples that cannot be definitely determined as belonging to one class will be assigned to a class by the PLSSVCM based on a probability value. This gives the classification results both a qualitative explanation and a quantitative evaluation. Simulation results of a fault diagnosis show that the correct rate of the PLSSVCM is 100%. Even though samples are noisy, the PLSSVCM still can effectively realize multi-class fault diagnosis of a roller bearing. The generalization property of the PLSSVCM is better than that of a neural network and a LSSVCM.
文摘Despite of its great efficiency for pattern classification, proximal supportvector machines (PSVM), a new version of SVM proposed recently, is sensitive to noise and outliers.To overcome the drawback, this paper modifies PSVM by associating a weightvalue with each input dataof PSVM. The distance between each data point and the center of corresponding class is used tocalculate the weight value. In this way, the effect of noise is reduced. The experiments indicatethat new SVM, weighted proximal support vector machine (WPSVM), is much more robust to noise thanPSVM without loss of computationally attractive feature of PSVM.
基金Supported by National Basic Research Program of China (973 Program) (2005CB321902) National Natural Science Foundation of China (90916024,60727002,60774003)+1 种基金 the Ph.D. Programs Foundation of Ministry of Education of China (20030006003) the Commission on Science,Technology,and Industry for National Defense (A2120061303)
基金supported by the Fundamental Research Funds for University of Science and Technology Beijing(FRF-BR-12-021)
文摘A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth, many fast opti- mization algorithms cannot be applied to solve the model. In order to overcome the difficulty of dealing with non-smooth objective functions, new methods that can solve the semi-supervised vector machine with desired classification accuracy are in great demand. A quintic spline function with three-times differentiability at the ori- gin is constructed by a general three-moment method, which can be used to approximate the symmetric hinge loss function. The approximate accuracy of the quintic spiine function is estimated. Moreover, a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed. Three experiments are performed to test the efficiency of the model. The experimental results show that the new model outperforms other smooth models, in terms of classification performance. Furthermore, the new model is not sensitive to the increasing number of the labeled samples, which means that the new model is more efficient.
文摘One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.
文摘Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM shows its outstanding performance in high-dimensional data classification. In the process of classification, SVM kernel parameter setting during the SVM training procedure, along with the feature selection significantly influences the classification accuracy. This paper proposes two novel intelligent optimization methods, which simultaneously determines the parameter values while discovering a subset of features to increase SVM classification accuracy. The study focuses on two evolutionary computing approaches to optimize the parameters of SVM: particle swarm optimization (PSO) and genetic algorithm (GA). And we combine above the two intelligent optimization methods with SVM to choose appropriate subset features and SVM parameters, which are termed GA-FSSVM (Genetic Algorithm-Feature Selection Support Vector Machines) and PSO-FSSVM(Particle Swarm Optimization-Feature Selection Support Vector Machines) models. Experimental results demonstrate that the classification accuracy by our proposed methods outperforms traditional grid search approach and many other approaches. Moreover, the result indicates that PSO-FSSVM can obtain higher classification accuracy than GA-FSSVM classification for hyperspectral data.
基金Project (No. 0424260002) supported by the Natural ScienceFoundation of Henan Province, China
文摘Support Vector Machine (SVM) is a machine learning algorithm based on the Statistical Learning Theory (SLT), which can get good classification effects with a few learning samples. SVM represents a new approach to pattern classification and has been shown to be particularly successful in many fields such as image identification and face recognition. It also provides us with a new method to develop intelligent fault diagnosis. This paper presents an SVM based approach for fault diagnosis of rolling bearings. Experimentation with vibration signals of bearing was conducted. The vibration signals acquired from the bearings were directly used in the calculating without the preprocessing of extracting its features. Compared with the Artificial Neural Network (ANN) based method, the SVM based method has desirable advantages. Also a multi-fault SVM classifier based on binary clas- sifier is constructed for gear faults in this paper. Other experiments with gear fault samples showed that the multi-fault SVM classifier has good classification ability and high efficiency in mechanical system. It is suitable for on line diagnosis for mechanical system.
文摘In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.
基金National Natural Science Foundation of China ( No. 61070033 )Fundamental Research Funds for the Central Universities,China( No. 2012ZM0061)
文摘It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy.
文摘Classification of human actions under video surveillance is gaining a lot of attention from computer vision researchers.In this paper,we have presented methodology to recognize human behavior in thin crowd which may be very helpful in surveillance.Research have mostly focused the problem of human detection in thin crowd,overall behavior of the crowd and actions of individuals in video sequences.Vision based Human behavior modeling is a complex task as it involves human detection,tracking,classifying normal and abnormal behavior.The proposed methodology takes input video and applies Gaussian based segmentation technique followed by post processing through presenting hole filling algorithm i.e.,fill hole inside objects algorithm.Human detection is performed by presenting human detection algorithm and then geometrical features from human skeleton are extracted using feature extraction algorithm.The classification task is achieved using binary and multi class support vector machines.The proposed technique is validated through accuracy,precision,recall and F-measure metrics.
文摘In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust.
基金supported by the National High-Tech Research and Development Program of China (863 Program) (No.2006AA04Z405)
文摘In order to improve the efficiency of the support vector machine (SVM) for classification to deal with a large amount of samples, the least squares support vector machine (LSSVM) for classification methods is introduced into the reliability analysis. To reduce the coraputational cost, the solution of the SVM is transformed from a quadratic programming to a group of linear equations. The numerical results indicate that the reliability method based on the LSSVM for classification has higher accuracy and requires less computational cost than the SVM method.
基金This work was supportedin part by the National Natural Science Foundation of China(No.60271025,No.30370395)in part by the Science and Technology Depart ment of Shaanxi Province(No.2003K10-G24).
文摘Mental task classification is one of the most important problems in Brain-computer interface.This paper studies the classification of five-class mental tasks.The nonlinear parameter of mean period obtained from frequency domain information was used as features for classification implemented by using the method of SVM(support vector machines).The averaged classification accuracy of 85.6% over 7 subjects was achieved for 2-second EEG segments.And the results for EEG segments of 0.5s and 5.0s compared favorably to those of Garrett's.The results indicate that the parameter of mean period represents mental tasks well for classification.Furthermore,the method of mean period is less computationally demanding,which indicates its potential use for online BCI systems.
基金supported in part by the Beijing Natural Science Foundation(No.4212015)China Ministry of Education-China Mobile Scientific Research Foundation(No.MCM20200102).
文摘Glaucoma is a progressive eye disease that can lead to blindness if left untreated.Early detection is crucial to prevent vision loss,but current manual scanning methods are expensive,time-consuming,and require specialized expertise.This study presents a novel approach to Glaucoma detection using the Enhanced Grey Wolf Optimized Support Vector Machine(EGWO-SVM)method.The proposed method involves preprocessing steps such as removing image noise using the adaptive median filter(AMF)and feature extraction using the previously processed speeded-up robust feature(SURF),histogram of oriented gradients(HOG),and Global features.The enhanced Grey Wolf Optimization(GWO)technique is then employed with SVM for classification.To evaluate the proposed method,we used the online retinal images for glaucoma analysis(ORIGA)database,and it achieved high accuracy,sensitivity,and specificity rates of 94%,92%,and 92%,respectively.The results demonstrate that the proposed method outperforms other current algorithms in detecting the presence or absence of Glaucoma.This study provides a novel and effective approach to Glaucoma detection that can potentially improve the detection process and outcomes.